HPV-associated diseases of the cervix uteri: Novelty in diagnosis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review considers the role of a number of molecular markers and predictors in precancer and cancer of the cervix uteri (CCU). Carcinogenesis is characterized by molecular genetic changes that may become prognostic and diagnostic markers for the progression of the process and may be the basis for creating new test systems for screening. MicroRNAs as powerful posttranscriptional regulators of gene expression, which can simultaneously modulate a number of target genes, are being actively studied now. MicroRNAs, the expression of which is changing in human papillomavirus (HPV)-associated diseases of the cervix uteri, have been identified. Tissue microRNA dysregulation may play an important role in the oncogenesis of CCU, so investigations of microRNA as both a predictor of CCU and its therapy option remain extremely relevant. Those of microRNA expression profiles are no less so for predicting the course of a neoplastic process in the cervix uteri and for revealing a correlation between the severity of cervical intraepithelial neoplasia, HPV load, and the level of the above markers during an observation over time.

Full Text

Restricted Access

About the authors

Vera Nikolaevna Prilepskaya

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: VPrilepskaya@mail.ru
MD, PhD, Professor, Deputy Director for Science

Niso Mirzoevna Nazarova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: grab2@yandex.ru
MD, PhD, Senior Researcher

Guranda Merabovna Mzarelua

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: mzareluag@mail.ru
PhD student

Leonid Zakievich Faizullin

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: l_faizullin@oparina4.ru
MD, Molecular-genetic Laboratory Researcher

Dmitriy Yur’evich Trofimov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: d.troflmov@dna-tech.ru
MD, PhD, Molecular-genetic Laboratory Chief

References

  1. Centers for Disease Control and Prevention (CDC). Human papillomavirusassociated cancers - United States, 2004-2008. MMWR Morb. Mortal Wkly Rep. 61(15): 258-61.
  2. Давыдов М.И., Аксель Е.М., ред. Статистика злокачественных новообразований в России и странах СНГ в 2012 г. М.: Издательская группа РОНЦ; 2014: 47. [Davydov M.I., Aksel E.M., eds. Statistics of malignant tumors in Russia and the CIS in 2012. Moscow: Publishing Group Cancer Research Center; 2014: 47. (in Russian)]
  3. Wang H.K., Duffy A.A., Broker T.R., Chow L.T. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratino-cytes. Genes Dev. 2009; 23(2): 181-94.
  4. Massad L.S., Einstein M.H., Huh W.K., Katki H.A., Kinney W.K., Schiffman M. et al.; 2012 ASCCP Consensus Guidelines Conference. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet. Gynecol. 2013; 121(4): 829-46.
  5. Wang X, Wang H.-K, Li Y. microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc. Natl. Acad. Sci. USA. 2014; 111(11): 4262-7.
  6. Киселев В.И., Киселев О.И. Вирусы папилломы человека в развитии рака шейки матки. М.: Роза мира; 2003. 90с. [Kiselev V.I., Kiselev O.I. Human papillomaviruses in cervical cancer development. Moscow: Rose of Peace; 2003 90 p. (in Russian)]
  7. Scheffner M, Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990; 63(6): 1129-36.
  8. Roman A., Munger K. The papillomavirus E7 proteins. Virology. 2013; 445(1-2): 138-68.
  9. Meijer C.J., van den Brule A.J., Snijders P.J., Helmerhorst T., Kenemans P., Walboomers J.M. Detection of human papillomavirus in cervical scrapes by the polymerase chain reaction in relation to cytology: possible implications for cervical cancer screening. IARC Sci. Publ. 1992; (119): 271-81.
  10. Khan M.J., Castle P.E., Lorincz A.T., Wacholder S., Sherman M., Scott D.R. et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of typespecific HPV testing in clinical practice. J. Natl. Cancer Inst. 2005; 97(14): 1072-9.
  11. Murphy N., Ring M., Heffron C.C., King B., Killalea A.G., Hughes C. et al. p16INK4A, CDC6, and MCM5: predictive biomarkers in cervical preinvasive neoplasia and cervical cancer. J. Clin. Pathol. 2005; 58(5): 525-34.
  12. Klaes R., Friedrich T., Spitkovsky D., Ridder R., Rudy W, Petry U. et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int. J. Cancer. 2001; 92(2): 276-84.
  13. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5): 843-54.
  14. Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403(6772): 901-6.
  15. Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75(5): 855-62.
  16. Wightman B., BUrglin T.R., Gatto J., Arasu P., Ruvkun G. Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 1991; 5(10): 1813-24.
  17. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294(5543): 853-8.
  18. Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D. et al. MicroRNA expression profiles classify human cancers. Nature. 2005; 435(7043): 834-8.
  19. Paranjape T., Slack F.J., Weidhaas J.B. MicroRNAs: tools for cancer diagnostics. Gut. 2009; 58(11): 1546-54.
  20. Lotterman C.D., Kent O.A., Mendell J.T. Functional integration of microR-NAs into oncogenic and tumor suppressor pathways. Cell Cycle. 2008; 7(16): 2493-9.
  21. Iorio M.V., Ferracin M., Liu C.G., Veronese A., Spizzo R., Sabbioni S. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65(16): 7065-70.
  22. Xie Y., Todd N.W., Liu Z., Zhan M., Fang H., Peng H. et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 2010; 67(2): 170-6.
  23. Michael M.Z., O’ Connor S.M., van Holst Pellekaan N.G., Young G.P., James R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003; 1(12): 882-91.
  24. Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006; 6(11): 857-66.
  25. Calin G.A., Sevignani C., Dumitru C.D., Hyslop T., Noch E., Yendamuri S. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA. 2004; 101(9): 2999-3004.
  26. Pasquinelli A.E., Reinhart B.J., Slack F., Martindale M.Q., Kuroda M.I., Maller B. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000; 408(6808): 86-9.
  27. Wang X. A PCR-based platform for microRNA expression profiling studies. RNA. 2009; 15(4): 716-23.
  28. Korpal M., Lee E.S., Hu G., Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 2008; 283(22): 14910-4.
  29. Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008; 10(5): 593-601.
  30. Do T.V., Kubba L.A., Du H., Sturgis C.D., Woodruff T.K. Transforming growth factor-^1, transforming growth factor-^2, and transforming growth factor-^3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Mol. Cancer Res. 2008; 6(5): 695-705.
  31. Tang B., Vu M, Booker T, Santner S.J., Miller F.R., Anver M.R., Wakefield L.M. TGF-в switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Invest. 2003; 112(7): 1116-24.
  32. Lipschutz J.H., Guo W, O’Brien L.E., Nguyen Y.H., Novick P., Mostov K.E. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell. 2000; 11(12): 4259-75.
  33. Kota J., Chivukula R.R., O’Donnell K.A., Wentzel E.A., Montgomery C.L., Hwang H.W. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009; 137(6): 1005-17.
  34. Valastyan S., Reinhardt F., Benaich N., Calogrias D., Szasz A.M., Wang Z.C. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009; 137(6): 1032-46.
  35. LiB.H., Zhou J.S., YeF, ChengX.D., Zhou C.Y., Lu W.G., XieX. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur. J. Cancer. 2011; 47(14): 2166-74.
  36. Xiong J., Du Q., Liang Z. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene. 2010; 29(35): 4980-8.
  37. Zheng Y.S., Zhang H., Zhang X.J., Feng D.D., Luo X.Q., Zeng C.W. et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 2012; 31(1): 80-92.
  38. Lee D.Y., Deng Z., Wang C.H., Yang B.B. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl. Acad. Sci. USA. 2007; 104(51): 20350-5.
  39. O’Donnell K.A., Wentzel E.A., Zeller K.I., Dang C.V., Mendell J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005; 435(7043): 839-43.
  40. Zheng Z.M., Wang X. Regulation of cellular miRNA expression by human papillomaviruses. Biochim. Biophys. Acta. 2011; 1809(11-12): 668-77.
  41. Hua Y, Larsen N, Kalyana-Sundaram S., Kjems J., Chinnaiyan A.M., Peter M.E. miRConnect 2.0: Identification of oncogenic, antagonistic miRNA families in three human cancers. BMC Genomics. 2013; 14: 179.
  42. Brosh R., Shalgi R., Liran A., Landan G., Korotayev K., Nguyen G.H. et al. p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol. Syst. Biol. 2008; 4: 229.
  43. Marchini S., Cavalieri D., Fruscio R., Calura E., Garavaglia D., Fuso Nerini I. et al. Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol. 2011; 12(3): 273-85.
  44. Della Vittoria Scarpati G, Falcetta F., Carlomagno C., Ubezio P., Marchini S., De Stefano A. et al. A specific miRNA signature correlates with complete patho logical response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012; 83(4): 1113-9.
  45. Lee J.W., Choi C.H., Choi J.J., Park Y.A., Kim S.J., Hwang S.Y. et al. Altered MicroRNA expression in cervical carcinomas. Clin. Cancer Res. 2008; 14(9): 2535-42.
  46. Lui W.O., Pourmand N., Patterson B.K., Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 2007; 67(13): 6031-43.
  47. Wang X., Tang S., Le S.Y., Lu R., Rader J.S., Meyers C., Zheng Z.M. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008; 3(7): e2557.
  48. Li Y., Liu J., Yuan C., Cui B., Zou X., Qiao Y. High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J. Int. Med. Res. 2010; 38(5): 1730-6.
  49. Hu X., Schwarz J.K., Lewis J.S. Jr., Huettner P.C., Rader J.S., Deasy J.O. et al. A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010; 70(4): 1441-8.
  50. Yue C., Wang M., Ding B., Wang W., Fu S., Zhou D. et al. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population. Gynecol. Oncol. 2011; 122(1): 33-7.
  51. Wang F., Li Y., Zhou J., Xu J., Peng C., Ye F. et al. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am. J. Pathol. 2011; 179(5): 2580-8.
  52. Li J.H., Xiao X., Zhang Y.N., Wang Y.M., Feng L.M., Wu Y.M., Zhang Y.X. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol. Oncol. 2011; 120(1): 145-51.
  53. Lajer C.B., Garn&s E., Friis-Hansen L., Norrild B., Therkildsen M.H., dud M. et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br. J. Cancer. 2012; 106(9): 1526-34.
  54. Kang H.W., Wang F., Wei Q., Zhao Y.F., Liu M., Li X., Tang H. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett. 2012; 586(6): 897-904.
  55. Liu L., Yu X., Guo X., Tian Z., Su M., Long Y. et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol. Med. Rep. 2012; 5(3): 753-60.
  56. Ahmad J., Hasnain S.E., Siddiqui M.A., Ahamed M., Musarrat J., Al-Khedhairy A.A. MicroRNA in carcinogenesis & cancer diagnostics: a new paradigm. Indian J. Med. Res. 2013; 137(4): 680-94.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies