Artificial intelligence technologies in gynecology

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The review includes the scientific data from national and foreign studies, 90% of which were published within the last five years. Their topic is related to the testing and analysis of the effectiveness of artificial intelligence (AI) in the diagnosis, treatment and prevention of gynecological pathology. It was concluded that the effectiveness of AI algorithms in many aspects surpasses experts in the diagnosis of cervical cancer, endometrial cancer, ovarian cancer and endometriosis, namely, in evaluating the results of direct and indirect imaging. The literature data show that the integration of AI into clinical practice significantly reduces diagnostic time and is very promising. At the same time, the work of AI in assessing cytology and histology has shown contradictory results. In cervical cytology, AI has surpassed specialists, but in the case of histology of cervical cancer, the results obtained so far do not allow for AI to be fully integrated into clinical practice.

Large language models (LLM) offer significant potential for patients and doctors, with ChatGPT being a primary example. Today, the chatbot often provides correct answers to questions from patients seeking gynecological advice. However, the accuracy of its responses when the questions are more specific and detailed is still not sufficient.

The integration of professional activities with AI-based management systems may reduce the error rate in clinical practice, but their widespread implementation is still limited.

Conclusion: The review demonstrates significant progress in the application of AI in gynecology, especially in the diagnosis of cervical, endometrial, ovarian, and endometriosis cancers. AI algorithms show high effectiveness in analyzing medical images, often surpassing traditional methods in accuracy and speed. However, the use of AI faces several ethical, legal, and practical challenges, such as transparency of decisions, responsibility for mistakes, and integration into clinical practice. Despite this, the potential of AI to improve diagnosis and optimize the work of an obstetrician-gynecologist is obvious.

Texto integral

Acesso é fechado

Sobre autores

Vadim Mozes

Kemerovo State University

Email: vadimmoses@gmail.com
ORCID ID: 0000-0002-3269-9018

Dr. Med. Sci., Professor, Director of the Medical Institute

Rússia, 6, Krasnaya St., Kemerovo, 650000

Roman Kotov

Kemerovo State University

Email: kotov@kemsu.ru
ORCID ID: 0000-0003-0238-3466

Dr. Sci. (Econ.), Vice-Rector for Digital Transformation

Rússia, 6, Krasnaya St., Kemerovo, 650000

Elena Rudaeva

Kemerovo State Medical University

Autor responsável pela correspondência
Email: rudaevae@mail.ru
ORCID ID: 0000-0002-6599-9906

PhD, Associate Professor at the Ushakova Department of Obstetrics and Gynecology

Rússia, 22a, Voroshilov St., Kemerovo, 650056

Svetlava Elgina

Kemerovo State Medical University

Email: elginas.i@mail.ru
ORCID ID: 0000-0002-6966-2681

Dr. Med. Sci., Professor at the Ushakova Department of Obstetrics and Gynecology

Rússia, 22a, Voroshilov St., Kemerovo, 650056

Kira Mozes

Kemerovo State Medical University

Email: kbsolo@mail.ru
ORCID ID: 0000-0003-2906-6217

Teaching Assistant at the Department of Polyclinic Therapy and Nursing

Rússia, 22a, Voroshilov St., Kemerovo, 650056

Grigory Vavin

Belyaev Kuzbass Regional Clinical Hospital

Email: okb-lab@yandex.ru
ORCID ID: 0000-0003-0179-0983

PhD, Deputy Chief Physician for Laboratory Diagnostics

Rússia, 22, Oktyabrsky Ave., Kemerovo, 650066

Bibliografia

  1. Ламоткин А.И., Корабельников Д.И., Ламоткин И.А., Лившиц С.А., Перевалова Е.Г. Искусственный интеллект в здравоохранении и медицине: история ключевых событий, его значимость для врачей, уровень развития в разных странах. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2024; 17(2): 243-50. [Lamotkin A.I., Korabelnikov D.I., Lamotkin I.A., Livshitz S.A., Perevalova E.G. Artificial intelligence in healthcare and medicine: the history of key events, its significance for doctors, the level of development in different countries. Farmakoekonomika. Modern pharmacoeconomics and pharmacoepidemiology. 2024; 17(2): 243-50 (in Russian)]. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.254
  2. Greeven M. China and AI in 2025: What global executives must know to stay ahead. Forbes. Available at: https://www.forbes.com/sites/markgreeven/2024/12/23/china-and-ai-in-2025-what-global-executives-must-know-to-stay-ahead
  3. Dhombres F., Bonnard J., Bailly K., Maurice P., Papageorghiou A.T., Jouannic J.M. Contributions of artificial intelligence reported in obstetrics and gynecology journals: systematic review. J. Med. Internet Res. 2022; 24(4): e35465. https://dx.doi.org/10.2196/35465
  4. Brandão M., Mendes F., Martins M., Cardoso P., Macedo G., Mascarenhas T. et al. Revolutionizing women's health: a comprehensive review of artificial intelligence advancements in gynecology. J. Clin. Med. 2024; 13(4): 1061. https://dx.doi.org/10.3390/jcm13041061
  5. Eshraghi N., Ghaemi M., Shabannejad Z., Bazmi E., Foroozesh M., Haddadi M. et al. Analysis of medico-legal claims related to deliveries: Caesarean section vs. vaginal delivery. PLoS ONE. 2024; 19(11): e0312614. https:// dx.doi.org/10.1371/journal.pone.0312614
  6. Vickers H., Jha S. Medicolegal issues in gynaecology. Obstetrics, gynaecology and reproductive medicine. 2020; 30(2): 43-7. https://dx.doi.org/10.1016/ j.ogrm.2019.11.004
  7. Khan I., Khare B.K. Exploring the potential of machine learning in gynecological care: a review. Arch. Gynecol. Obstet. 2024; 309(6): 2347-65. https:// dx.doi.org/10.1007/s00404-024-07479-1
  8. Recker F., Gembruch U., Strizek B. Clinical ultrasound applications in obstetrics and gynecology in the year 2024. J. Clin. Med. 2024; 13(5): 1244. https:// dx.doi.org/10.3390/jcm13051244
  9. Коломеец Е.В., Тарасова Л.П., Потехина Т.Д., Виривская Е.В., Бахтияров К.Р. Ошибки в диагностике интраэпителиальных поражений и рака шейки матки и современные возможности улучшения качества первичного скрининга. Архив акушерства и гинекологии им. В.Ф. Снегирёва. 2024; 11(1): 57-67. [Kolomeets E.V., Tarasova L.P., Potekhina T.D., Virivskaya E.V., Bakhtiyarov K.R. Errors in the diagnosis of intraepithelial lesions and cervical cancer and modern opportunities to improve the quality of primary screening. V.F. Snegirev archives of obstetrics and gynecology. 2024; 11(1): 57-67 (in Russian)]. https://dx.doi.org/10.17816/ 2313-8726-2024-11-1-57-67
  10. Akash R.S., Islam R., Badhon S.S.I., Hossain K.T. CerviXpert: a multi-structural convolutional neural network for predicting cervix type and cervical cell abnormalities. Digit. Health. 2024; 10: 20552076241295440. https:// dx.doi.org/10.1177/20552076241295440
  11. Liao W, Xu X. Progress in the application research of cervical cancer screening developed by artificial intelligence in large populations. Discov. Oncol. 2025; 16(1): 1282. https://dx.doi.org/10.1007/s12672-025-03102-0
  12. Li J., Adobo S.D., Shi H., Judicael K.A.W., Lin N., Gao L. Screening methods for cervical cancer. ChemMedChem. 2024; 19(16): e202400021. https:// dx.doi.org/10.1002/cmdc.202400021
  13. Giansanti D., Lastrucci A., Pirrera A., Villani S., Carico E., Giarnieri E. AI in cervical cancer cytology diagnostics: a narrative review of cutting-edge studies. Bioengineering (Basel). 2025; 12(7): 769. https://dx.doi.org/10.3390/bioengineering12070769
  14. Mehlhorn G., Münzenmayer C., Benz M., Kage A., Beckmann M.W., Wittenberg T. Computer-assisted diagnosis in colposcopy: results of a preliminary experiment? Acta Cytol. 2012; 56(5): 554-9. https://dx.doi.org/10.1159/000341546
  15. Park J., Yang H., Roh H.J., Jung W., Jang G.J. Encoder-weighted W-Net for unsupervised segmentation of cervix region in colposcopy images. Cancers (Basel). 2022; 14(14): 3400. https://dx.doi.org/10.3390/cancers14143400
  16. Ledwaba L., Saidu R., Malila B., Kuhn L., Mutsvangwa T.E.M. Automated analysis of digital medical images in cervical cancer screening: a systematic review. medRxiv. [Preprint]. 2024: 2024.09.27.24314466. https:// dx.doi.org/10.1101/2024.09.27.24314466
  17. Asiedu M.N., Simhal A., Chaudhary U., Mueller J.L., Lam C.T., Schmitt J.W. et al. Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, pocket colposcope. IEEE Trans. Biomed. Eng. 2019; 66(8): 2306-18. https://dx.doi.org/10.1109/TBME.2018.2887208
  18. Sampaio A.F., Rosado L., Vasconcelos M.J. Towards the mobile detection of cervical lesions: a region-based approach for the analysis of microscopic images. IEEE Access. 2021; 9: 152188-205. https://dx.doi.org/10.1109/ACCESS.2021.3126486
  19. Hussain E., Mahanta L.B., Das C.R., Talukdar R.K. A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network. Tissue Cell. 2020; 65: 101347. https://dx.doi.org/10.1016/j.tice.2020.101347
  20. Xue P., Xu H.M., Tang H.P., Wu W.Q., Seery S., Han X. et al. Assessing artificial intelligence enabled liquid-based cytology for triaging HPV-positive women: a population-based cross-sectional study. Acta Obstet. Gynecol. Scand. 2023; 102(8): 1026-33. https://dx.doi.org/10.1111/aogs.14611
  21. Park Y.R., Kim Y.J., Ju W., Nam K., Kim S., Kim K.G. Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images. Sci. Rep. 2021; 11(1): 16143. https://dx.doi.org/10.1038/ s41598-021-95748-3
  22. Fu L., Xia W., Shi W., Cao G.X., Ruan Y.T., Zhao X.Y. et al. Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test. Int. J. Med. Inform. 2022; 159: 104675. https://dx.doi.org/10.1016/ j.ijmedinf.2021.104675
  23. Urushibara A., Saida T., Mori K., Ishiguro T., Sakai M., Masuoka S. et al. Diagnosing uterine cervical cancer on a single T2-weighted image: comparison between deep learning versus radiologists. Eur. J. Radiol. 2021; 135: 109471. https://dx.doi.org/10.1016/j.ejrad.2020.109471
  24. Tanos V., Neofytou M., Tanos P., Pattichis C.S., Pattichis M.S. Computer-aided diagnosis by tissue image analysis as an optical biopsy in hysteroscopy. Int. J. Mol. Sci. 2022; 23(21): 12782. https://dx.doi.org/10.3390/ ijms232112782
  25. Takahashi Y., Sone K., Noda K., Yoshida K., Toyohara Y., Kato K. et al. Automated system for diagnosing endometrial cancer by adopting deep-learning technology in hysteroscopy. PLOS One. 2021; 16(3): e0248526. https:// dx.doi.org/10.1371/journal.pone.0248526
  26. Urushibara A., Saida T., Mori K., Ishiguro T., Inoue K., Masumoto T. et al. The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists. BMC Med. Imaging. 2022; 22(1): 80. https://dx.doi.org/10.1186/s12880-022-00808-3
  27. Petrila O., Stefan A.E., Gafitanu D., Scripcariu V., Nistor I. The applicability of artificial intelligence in predicting the depth of myometrial invasion on MRI studies-a systematic review. Diagnostics (Basel). 2023; 13(15): 2592. https://dx.doi.org/10.3390/diagnostics13152592
  28. Hart G.R., Yan V., Huang G.S., Liang Y., Nartowt B.J., Muhammad W. et al. Population-based screening for endometrial cancer: human vs. machine intelligence. Front. Artif. Intell. 2020; 3: 539879. https://dx.doi.org/10.3389/frai.2020.539879
  29. Lee B., Chang S.J., Kwon B.S., Son J.H., Lim M.C., Kim Y.H. et al. Clinical guidelines for ovarian cancer: the Korean Society of gynecologic oncology guidelines. J. Gynecol. Oncol. 2024; 35(1): e43. https://dx.doi.org/10.3802/jgo.2024.35.e43
  30. Xu H.L., Gong T.T., Liu F.H., Chen H.Y., Xiao Q., Hou Y. et al. Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. EClinicalMedicine. 2022; 53: 101662. https://dx.doi.org/10.1016/j.eclinm.2022.101662
  31. Ma L., Huang L., Chen Y., Zhang L., Nie D., He W. et al. AI diagnostic performance based on multiple imaging modalities for ovarian tumor: a systematic review and meta-analysis. Front. Oncol. 2023; 13: 1133491. https://dx.doi.org/10.3389/fonc.2023.1133491
  32. Barnard M.E., Pyden A., Rice M.S., Linares M., Tworoger S.S., Howitt B.E. et al. Inter-pathologist and pathology report agreement for ovarian tumor characteristics in the Nurses' Health Studies. Gynecol Oncol. 2018; 150(3): 521-526. https://dx.doi.org/10.1016/j.ygyno.2018.07.003
  33. Zeng X, Li Z, Dai L, Li J, Liao L, Chen W. Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024. Discov. Oncol. 2025; 16(1): 755. https://dx.doi.org/10.1007/s12672-025-02416-3
  34. Breen J., Allen K., Zucker K., Adusumilli P., Scarsbrook A., Hall G. et al. Artificial intelligence in ovarian cancer histopathology: a systematic review. NP J. Precis. Oncol. 2023; 7(1): 83. https://dx.doi.org/10.1038/s41698-023-00432-6
  35. Ioannidou A., Machairiotis N., Stavros S., Potiris A., Karampitsakos T., Pantelis A.G. et al. Comparison of surgical interventions for endometrioma: a systematic review of their efficacy in addressing infertility. Biomedicines. 2024; 12(12): 2930. https://dx.doi.org/10.3390/biomedicines12122930
  36. Greene A.D., Lang S.A., Kendziorski J.A., Sroga-Rios J.M., Herzog T.J., Burns K.A. Endometriosis: where are we and where are we going? Reproduction. 2016; 152(3): R63-78. https://dx.doi.org/10.1530/REP-16-0052
  37. Bendifallah S., Puchar A., Suisse S., Delbos L., Poilblanc M., Descamps P. et al. Machine learning algorithms as new screening approach for patients with endometriosis. Sci. Rep. 2022; 12(1): 639. https://dx.doi.org/10.1038/ s41598-021-04637-2
  38. Sivajohan B., Elgendi M., Menon C., Allaire C., Yong P., Bedaiwy M.A. Clinical use of artificial intelligence in endometriosis: a scoping review. NP J. Digit. Med. 2022; 5(1): 109. https://dx.doi.org/10.1038/s41746-022-00638-1
  39. Littmann M., Selig K., Cohen-Lavi L., Frank Y., Hönigschmid P., Kataka E. et al. Validity of machine learning in biology and medicine increased through collaborations across fields of expertise. Nat. Mach. Intell. 2020; 2(1): 18-24. https://dx.doi.org/10.1038/s42256-019-0139-8
  40. Balica A., Dai J., Piiwaa K., Qi X., Green A.N., Philips N. et al. Augmenting endometriosis analysis from ultrasound data with deep learning. Medical imaging 2023: ultrasonic imaging and tomography. 2023; 12470: 118-23. https://dx.doi.org/10.1117/12.2653940
  41. Hu P., Gao Y., Zhang Y., Sun K. Ultrasound image-based deep learning to differentiate tubal-ovarian abscess from ovarian endometriosis cyst. Front. Physiol. 2023; 14: 1101810. https://dx.doi.org/10.3389/fphys.2023.1101810
  42. Cetera G.E., Tozzi A.E., Chiappa V., Castiglioni I., Merli C.E.M., Vercellini P. Artificial intelligence in the management of women with endometriosis and adenomyosis: can machines ever be worse than humans? J. Clin. Med. 2024; 13(10): 2950. https://dx.doi.org/10.3390/jcm13102950
  43. Voelker R. The promise and pitfalls of AI in the complex world of diagnosis, treatment, and disease management. JAMA. 2023; 330(15): 1416-19. https://dx.doi.org/10.1001/jama.2023.19180
  44. Sahni N.R., Carrus B. Artificial intelligence in U.S. health care delivery. N. Engl. J. Med. 2023; 389(4): 348-58. https://dx.doi.org/10.1056/NEJMra2204673
  45. Kanjee Z., Crowe B., Rodman A. Accuracy of a generative Artificial intelligence model in a complex diagnostic challenge. JAMA. 2023; 330(1): 78-80. https://dx.doi.org/10.1001/jama.2023.8288
  46. Eriksen A.V., Möller S., Ryg J. Use of GPT-4 to diagnose complex clinical cases. NEJM AI. 2023; 19(1): AIp2300031. https://dx.doi.org/10.1056/AIp2300031
  47. Ozgor B.Y., Simavi M.A. Accuracy and reproducibility of ChatGPT’s free version answers about endometriosis. Int. J. Gynaecol. Obstet. 2024; 165(2): 691-5. https://dx.doi.org/10.1002/ijgo.15309
  48. Jiang V.S., Bormann C.L. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil. Steril. 2023; 120(1): 17-23. https://dx.doi.org/10.1016/j.fertnstert.2023.05.149
  49. McCallum C., Riordon J., Wang Y., Kong T., You J.B., Sanner S. et al. Deep learning-based selection of human sperm with high DNA integrity. Commun. Biol. 2019; 2: 250. https://dx.doi.org/10.1038/s42003-019-0491-6
  50. Cherouveim P., Velmahos C., Bormann C.L. Artificial intelligence for sperm selection-a systematic review. Fertil. Steril. 2023; 120(1): 24-31. https:// dx.doi.org/10.1016/j.fertnstert.2023.05.157
  51. Salih M., Austin C., Warty R.R., Tiktin C., Rolnik D.L., Momeni M. et al. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum. Reprod. Open. 2023; 2023(3): hoad031. https://dx.doi.org/10.1093/hropen/hoad031
  52. Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Франкевич В.Е., Калинина Е.А. Изучение аналитической обработки клинико-анамнестических и эмбриологических данных пациентов в программе вспомогательных репродуктивных технологий различными методами машинного обучения. Акушерство и гинекология. 2024; 3: 96-107. [Drapkina Yu.S., Makarova N.P., Vasilev R.A., Amelin V.V., Frankevich V.E., Kalinina E.A. Application of various machine learning techniques to the analysis of clinical, anamnestic, and embryological data of patients undergoing assisted reproductive technologies. Obstetrics and Gynecology. 2024; (3): 96-107 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.281
  53. Драпкина Ю.С., Макарова Н.П., Чаговец В.В., Васильев Р.А., Амелин В.В., Калинина Е.А. Использование машинного обучения для анализа липидного профиля среды культивирования и прогнозирования эффективности вспомогательных репродуктивных технологий. Акушерство и гинекология. 2025; 2: 91-9. [Drapkina Yu.S., Makarova N.P., Chagovets V.V., Vasiliev R.A., Amelin V.V., Kalinina E.A. Using machine learning to analyze the lipid profile of culture medium and predict the efficacy of assisted reproductive technologies. Obstetrics and Gynecology. 2025; (2): 91-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.280
  54. Alowais S.A., Alghamdi S.S., Alsuhebany N., Alqahtani T., Alshaya A.I., Almohareb S.N. et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med. Educ. 2023; 23(1): 689. https:// dx.doi.org/10.1186/s12909-023-04698-z
  55. Boudi A.L., Boudi M., Chan C., Boudi F.B. Ethical challenges of Artificial intelligence in medicine. Cureus. 2024; 16(11): e74495. https://dx.doi.org/ 10.7759/cureus.74495
  56. Mohanasundari S.K., Kalpana M., Madhusudhan U., Vasanthkumar K., B R., Singh R. et al. Can Artificial intelligence replace the unique nursing role? Cureus. 2023; 15(12): e51150. https://dx.doi.org/10.7759/cureus.51150
  57. World Health Organization. Ethics and governance of artificial intelligence for health. WHO Guidance. Geneva: World Health Organization; 2021. Available from: https://www.who.int/publications/i/item/9789240029200

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Figure. Block diagram of the study

Baixar (153KB)

Declaração de direitos autorais © Bionika Media, 2025