Shear wave elastography and elastometry in the differential diagnosis of metastatic parasternal lymphatic collector in patients with breast cancer


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective. To improve the effectiveness of diagnosing metastatic parasternal lymph nodes. Materials and methods. The study included 55 women diagnosed with breast cancer during the period from 2017 to 2019. Results. The patients were divided into two groups: 24 patients with metastatic lesions and 31 patients with lymphoid hyperplasia. The average shear wave velocity in the lymph node was 2.14 (0.77) cm/s in patients with lymphoid hyperplasia, it was 3.13 (1.09) cm/s in case of metastatic lesions and 2.26 (0.71) cm/s in the surrounding tissues. Shear wave velocity in metastasis was higher (p<0.0001) than one in the lymph node hyperplasia and in the surrounding tissues. The optimal threshold value was 2.385 m/s. Elastometry was informative with the following indicators: sensitivity - 77.4%; specificity - 66.7%; positive prognostic value - 75.0%; negative prognostic value - 69.6%. Elastography showed that hard consistency was characteristic of 23 (95.8%) metastatic lymph nodes, and soft consistency was in one (4.2%) case. Elastometry showed hard consistency of hyperplasia in 7 (28.0%) cases, and soft consistency in 18 (72.0%) cases. Elastography was informative with the following indicators: sensitivity - 77.3%, specificity - 69.7%, positive prognostic value - 63.0%, negative prognostic value - 82.1%. Conclusion. Comprehensive ultrasound examination of the lymph nodes, including shear wave elastography and elastometry can increase informative value of the standard ultrasound examination.

全文:

受限制的访问

作者简介

Vyacheslav Snitkin

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: snitkinvm@yandex.ru
post-graduate student of the Department of ultrasound diagnostics of the Research Institute of Clinical and Experimental Radiology

Alina Samoukina

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: neurol5doc@yandex.ru
post-graduate student of the oncological department of surgical methods of treatment No. 13, Institute of Clinical Oncology

Nafset Khakurinova

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: nafset270l@mail.ru
Oncologist, Department of the day hospital (chemotherapeutic and surgical methods of treatment)

Vladimir Sholokhov

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: vnshell@mail.ru
MD, Professor, leading researcher of the Department of ultrasound diagnostics of the Research Institute of Clinical and Experimental Radiology

Yuri Sergeev

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: info@ronc.ru
PhD., associate professor of the Department of Oncology, Institute of Clinical Medicine named after N.V. Sklifosovsky

Dmitry Avtomonov

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: info@ronc.ru
PhD., assistant of the Department of Oncology, Institute of Clinical Medicine named after N.V. Sklifosovsky

Ramiz Valiev

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: info@ronc.ru
PhD., Head of the Oncological Department of surgical methods of treatment No. 13, Research Institute of Clinical Oncology

Alexander Petrovsky

N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia

Email: alexpetrovsky@hotmail.com
PhD, deputy director for the development of cancer care in the regions, Research Institute of Clinical Oncology

参考

  1. Brierley J.D., Gospodarowicz M.K., Wittekind C. TNM Classification of malignant tumours, 8th ed. Wiley-Blackwell; January 2017. 272p.
  2. He N., Xie C., Wei W., Pan C., Wang W., Lv N. et al. A new, preoperative, MRI-based scoring system for diagnosing malignant axillary lymph nodes in women evaluated for breast cancer. Eur. J. Radiol. 2012; 81(10): 2602-12. https://dx.doi. org/10.1016/j.ejrad.2012.03.019.
  3. Fornasa F., Nesoti M.V., Bovo C., Bonavina M.G. Diffusion-weighted magnetic resonance imaging in the characterization of axillary lymph nodes in patients with breast cancer. J. Magn. Reson. Imaging. 2012; 36(4): 858-64. https:// dx.doi.org/10.1002/jmri.23706.
  4. An Y.Y., Kim S.H., Kang B.J., Lee A.W. Comparisons of positron emission tomography/computed tomography and ultrasound imaging for detection of internal mammary lymph node metastases in patients with breast cancer and pathologic correlation by ultrasound-guided biopsy procedures. J. Ultrasound Med. 2015; 34(8): 1385-94. https://dx.doi.org/10.7863/ultra.34.8.1385.
  5. Eubank W.B., Mankoff D.A., Takasugi J., Vesselle H., Eary J.F., Shanley T.J. et al. 18fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J. Clin. Oncol. 2001; 19(15): 3516-23. https://dx.doi.org/10.1200/JCO.2001.19.15.3516.
  6. Segaert I., Mottaghy F., Ceyssens S., De Wever W., Stroobants S., Van Ongeval C. et al. Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J. 2010; 16(6): 617-24. https://dx.doi.org/10.1111/j.1524-4741.2010.00987.x.
  7. Orsaria P., Chiaravalloti A., Caredda E., Marchese P.V., Titka B., Anemona L. et al. Evaluation of the usefulness of FDG-PET/CT for nodal staging of breast cancer. Anticancer Res. 2018; 38(12): 6639-52. https://dx.doi.org/ 10.21873/ anticanres.13031.
  8. Kim E.J., Kim S.H., Kang B.J., Choi B.G., Song B.J., Choi J.J. Diagnostic value of breast MRI for predicting metastatic axillary lymph nodes in breast cancer patients: diffusion-weighted MRI and conventional MRI. Magn. Reson. Imaging. 2014; 32(10): 1230-6. https://dx.doi.org/10.1016/j.mri.2014.07.001.
  9. Fujiwara T., Tomokuni J., Iwanaga K., Ooba S., Haji T. Acoustic radiation force impulse imaging for reactive and malignant/metastatic cervical lymph nodes. Ultrasound Med. Biol. 2013; 39(7): 1178-83. https://dx.doi.org/ 10.1016/j. ultrasmedbio.2013.02.001.
  10. Azizi G., Keller J.M., Mayo M.L., Piper K., Puett D., Earp K.M., Malchoff C.D. Shear wave elastography and cervical lymph nodes: predicting malignancy. Ultrasound Med. Biol. 2016; 42(6): 1273-81. https://dx.doi.org/10.1016/j. ultrasmedbio.2016.01.012.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2020
##common.cookie##