Acoustic impulse response fluctuations and coherent underwater acoustic communication in shallow waters under autumn conditions
- 作者: Shatravin A.V.1,2
-
隶属关系:
- Shirshov Institute оf Oceanology, Russian Academy of Sciences
- Prokhorov General Physics Institute, Russian Academy of Sciences
- 期: 卷 71, 编号 2 (2025)
- 页面: 241-259
- 栏目: АКУСТИКА ОКЕАНА. ГИДРОАКУСТИКА
- URL: https://journals.eco-vector.com/0320-7919/article/view/689719
- DOI: https://doi.org/10.31857/S0320791925020082
- EDN: https://elibrary.ru/IJCAAI
- ID: 689719
如何引用文章
详细
The paper presents the results of a full-scale experiment aimed at assessing the temporal variability of the impulse response of a hydroacoustic channel and the efficiency of coherent underwater acoustic communications using bottom transmitters and receivers at frequencies of ~10 kHz on the Black Sea shelf in autumn. Three prominent maxima of variable amplitude were observed in the impulse response structure throughout the experiment (~36 h). The range of variability of the root-mean-square decoding error was ~11 dB, the bit error ratio varied from 0 to 0.10. We found a a strong relationship of the values of decoding errors with the amplitude of the maximum arrival in the structure of the reference impulse response corresponding to a group of rays with one reflection off the surface, as well as with the variation coefficient of high-frequency fluctuations of the amplitude of this arrival in the instantaneous estimate of the impulse response. Using numerical modeling, the hypothesis was confirmed that in autumn conditions, characterized by the absence of a pronounced seasonal thermocline, the main hydrophysical cause of the variability of the amplitude of the main arrival, and, as a consequence, the effectiveness of underwater acoustic communications, consisted in an insignificant (fractions of a degree) change of temperature in the upper layer of sea water.
全文:

作者简介
A. Shatravin
Shirshov Institute оf Oceanology, Russian Academy of Sciences; Prokhorov General Physics Institute, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ashatravin@ocean.ru
俄罗斯联邦, Moscow, 117997; st. Vavilova 38, Moscow, 119991
参考
- Rudnick D. L. Ocean research enabled by underwater gliders // Annual review of marine science. 2016. V. 8. P. 519–541.
- Островский А.Г. и др. Автономный мобильный аппаратно-программный комплекс вертикального зондирования морской среды на заякоренной буйковой станции // Океанология. 2013. Т. 53. № 2. С. 259–259.
- Krishfield R. et al. Automated ice-tethered profilers for seawater observations under pack ice in all seasons // J. Atmospheric and Oceanic Technology. 2008. V. 25. № 11. P. 2091–2105.
- Roemmich D., Owens W. The Argo project: Global ocean observations for understanding and prediction of climate variability // Oceanography. 2000. V. 13. № 2. P. 45–50.
- Ostrovskii A.G. et al. Automated tethered profiler for hydrophysical and bio-optical measurements in the Black Sea carbon observational site // J. Marine Science and Engineering. 2022. V. 10. № 3. P. 322.
- Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. Л.: Гидрометеоиздат, 1982.
- Fisher F.H., Simmons V.P. Sound absorption in sea water // J. Acoust. Soc. Am. 1977. V. 62. № 3. P. 558–564.
- Sozer E.M., Stojanovic M., Proakis J.G. Underwater acoustic networks // IEEE J. Oceanic Engineering. 2000. V. 25. № 1. P. 72–83.
- Chitre M., Shahabudeen S., Stojanovic M. Underwater acoustic communications and networking: Recent advances and future challenges // Marine Technology Soc. J. 2008. V. 42. № 1. P. 103–116.
- González-García J. et al. Autonomous underwater vehicles: Localization, navigation, and communication for collaborative missions // Applied sciences. 2020. V. 10. № 4. P. 1256.
- Ali M.F. et al. Recent advances and future directions on underwater wireless communications // Archives of Computational Methods in Engineering. 2020. V. 27. P. 1379–1412.
- Zia M.Y. I., Poncela J., Otero P. State-of-the-art underwater acoustic communication modems: Classifications, analyses and design challenges // Wireless personal communications. 2021. V. 116. P. 1325–1360.
- Sendra S., Lloret J., Jimenez J.M. and Parra L. Underwater acoustic modems // IEEE Sensors J. 2015. V. 16. № 11. P.4063–4071.
- Акуличев В.А., Каменев С.И., Моргунов Ю.Н. Применение сложных акустических сигналов в системах связи и управления подводными объектами // Докл. Акад. наук. 2009. Т. 426. № 6. С. 821–823.
- Моргунов Ю.Н., Буренин А.В., Безответных В.В., Голов А.А. Распространение импульсных псевдослучайных сигналов из шельфа в глубокое море в зимних гидрологических условиях Японского моря // Акуст. журн. 2017. Т. 63. № 6. С. 646–650.
- Моргунов Ю.Н., Безответных В.В., Голов А.А., Буренин А.В., Лебедев М.С., Петров П.С. Экспериментальное исследование импульсной характеристики волновода Японского моря с использованием псевдослучайных последовательностей в приложении к навигации удаленных объектов // Акуст. журн. 2021. Т. 67. № 3. С. 291–297.
- Song H.C. et al. Long-range acoustic communication in deep water using a towed array // J. Acoust. Soc. Am. 2011. V. 129. № 3. P. EL71–EL75.
- Shimura T. et al. Long-range time reversal communication in deep water: Experimental results // J. Acoust. Soc. Am. 2012. V. 132. № 1. P. EL49–EL53.
- Freitag L., Stojanovic M. Basin-scale acoustic communication: A feasibility study using tomography m-sequences // MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proc. (IEEE Cat. No. 01CH37295). IEEE, 2001. V. 4. P. 2256–2261.
- Sklar B. Digital Communications. NJ, Englewood Cliffs: Prentice-Hall, 2001.
- Proakis J. Digital Communications. NY USA: McGraw-Hill, 2001.
- Jeruchim M.C., Balaban P., Shanmugan K.S. Simulation of communication systems: modeling, methodology and techniques. Springer Science & Business Media, 2006.
- Stojanovic M. Underwater acoustic communications: Design considerations on the physical layer // 2008 Fifth Annual Conf. on Wireless on Demand Network Systems and Services, 2008 Jan 23. P. 1–10. IEEE, 2008.
- Kilfoyle D.B. and Baggeroer A.B. The state of the art in underwater acoustic telemetry // IEEE J. Oceanic Engineering. 2000. V. 25. № 1. P. 4–27.
- Stojanovic M. and Preisig J. Underwater acoustic communication channels: Propagation models and statistical characterization // IEEE Communications Magazine. 2009. V. 47. № 1. P. 84–89.
- Yang T.C. Properties of underwater acoustic communication channels in shallow water // J. Acoust. Soc. Am. 2012. V. 131. № 1. P. 129–145.
- Бобровский И.В., Яготинец В.П. Экспериментальные исследования акустической системы связи в условиях мелководья // Акуст. журн. 2013. Т. 59. № 6. С. 667–667.
- Курьянов Б.Ф., Пенкин М.М. Цифровая акустическая связь в мелком море для океанологических применений // Акуст. журн. 2010. Т. 56. № 2. С. 245–255.
- Rodionov A.Y., Kulik S.Y. and Unru P.P. Some trial results of the hydro acoustical communication system operation for AUV and ASV group control and navigation // In OCEANS 2016, September. MTS/IEEE Monterey. P. 1–8. IEEE, 2016.
- Qarabaqi P. and Stojanovic M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels // IEEE J. Oceanic Engineering. 2013. V. 38. № 4. P. 701–717.
- Preisig J.C. Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment // J. Acoust. Soc. Am. 2005. V. 118. № 1. P. 263–278.
- Chitre M. A high-frequency warm shallow water acoustic communications channel model and measurements // J. Acoust. Soc. Am. 2007. V. 122. № 5. P. 2580–2586.
- Siderius M., Porter M.B., Hursky P., McDonald V. and KauaiEx Group. Effects of ocean thermocline variability on noncoherent underwater acoustic communications // J. Acoust. Soc. Am. 2007. V. 121. № 4. P. 1895–1908.
- Qarabaqi P. and Stojanovic M. Modeling the large scale transmission loss in underwater acoustic channels // In 49th Annual Allerton Conf. on Communication, Control, and Computing (Allerton), 2011, September. P. 445–452. IEEE, 2011.
- Song A., Badiey M., Newhall A.E., Lynch J.F., DeFerrari H.A. and Katsnelson B.G. Passive time reversal acoustic communications through shallow-water internal waves // IEEE J. Oceanic Engineering. 2010. V. 35. № 4. P. 756–765.
- Yang T.C. The effect of internal waves on low-frequency underwater acoustic communications // J. Acoust. Soc. Am. 2004. V. 115. № 5. P. 2469–2469.
- Carbone N.M. and Hodgkiss W.S. Effects of tidally driven temperature fluctuations on shallow-water acoustic communications at 18 kHz // IEEE J. Oceanic Engineering. 2000. V. 25. № 1. P. 84–94.
- Song A., Badiey M., Song H.C., Hodgkiss W.S., Porter M.B. and the KauaiEx Group. Impact of ocean variability on coherent underwater acoustic communications during the Kauai experiment (KauaiEx) // J. Acoust. Soc. Am. 2008. V. 123. № 2. P. 856–865.
- Preisig J. Acoustic propagation considerations for underwater acoustic communications network development // ACM SIGMOBILE Mobile Computing and Communications Review. 2007. V. 11. № 4. P. 2–10.
- van Walree P.A. et al. The watermark benchmark for underwater acoustic modulation schemes // IEEE J. Oceanic Engineering. 2017. V. 42. № 4. P. 1007–1018.
- Зацепин А.Г., Островский А.Г., Кременецкий В.В. и др. Подспутниковый полигон для изучения гидрофизических процессов в шельфово-склоновой зоне Черного моря // Изв. Рос. Акад. наук. Физика атмосферы и океана. 2014. Т. 50. № 1. С. 16.
- Rife D.D., Vanderkooy J. Transfer-function measurement with maximum-length sequences // J. Audio Engineering Society. 1989. V. 37. № 6. P. 419–444.
- Stojanovic M., Proakis J.G., Catipovic J.A. Performance of high-rate adaptive equalization on a shallow water acoustic channel // J. Acoust. Soc. Am. 1996. V. 100. № 4. P. 2213–2219.
- Del Grosso V.A. New equation for the speed of sound in natural waters (with comparisons to other equations) // J. Acoust. Soc. Am. 1974. V. 56. № 4. P. 1084–1091.
- Porter M.B. The bellhop manual and user’s guide: Preliminary draft // Heat, Light, and Sound Research, Inc., La Jolla, CA, USA, Tech. Rep. 2011. V. 260.
- Katsnelson B., Petnikov V. and Lynch J. Fundamentals of shallow water acoustics. V. 1. New York: Springer, 2012.
- Волков М.В., Григорьев В.А., Жилин И.В., Луньков А.А., Петников В.Г., Шатравин А.В. Мелководный акустический волновод арктического типа как канал для передачи информации при звукоподводной связи // Акуст. журн. 2018. Т. 64. № 6. С. 676–681.
- Hamilton E.L. Compressional-wave attenuation in marine sediments // Geophysics. 1972. V. 37. № 4. P. 620–646.
- Akal T. The relationship between the physical properties of underwater sediments that affect bottom reflection // Marine Geology. 1972. V. 13. № 4. P. 251–266.
- Григорьев В.А., Кучер К.М., Луньков А.А., Макаров М.М., Петников В.Г. Акустические характеристики дна озера Байкал // Акуст. журн. 2020. Т. 66. № 5. С. 517–526.
补充文件
