Modeling of river runoff formation in the mountainous Crimea under current and projected climate conditions

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The ECOMAG runoff formation model was used to calculate physically based changes in the water regime of the rivers of the mountain Crimea in the XXI century using data from an ensemble of climatic models taking into account various global warming scenarios. The objects of the study were the rivers Chernaya, Belbek, Derekoika, Alma, Salgir, Burulcha, Tonas, Kuchuk-Karasu, and Indol. Models of natural river flow formation for the specified set of river basins were developed on the basis of homogeneous sources of information on hydrometeorological regime and land surface parameters. The hydrological models were verified by comparing actual and calculated daily and monthly water discharges at different hydrometric stations over a multi-year period. Then, the hydrological models were used to estimate scenario future changes in river runoff for a year, conditionally warm and cold seasons of the year using data from an ensemble of global climate models relative to the base period 2006–2020. Under the realization of any of the RCP scenarios in the near-term perspective for 2021–2050, as well as under RCP 2.6 and RCP 4.5 scenarios at the end of the XXI century, water resources deficit can be observed mainly in the river basins located to the east of the Salgir headwaters, however, without reaching catastrophic indicators. According to more aggressive climatic scenarios RCP 6.0 and RCP 8.5, at the end of the XXI century, the greatest reduction of river flow in the mountainous Crimea is likely, which will contribute to the development of water scarcity at the expense of atmospheric sources.

全文:

受限制的访问

作者简介

A. Kalugin

Water Problems Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: andrey.kalugin@iwp.ru
俄罗斯联邦, Moscow, 119333

Yu. Motovilov

Water Problems Institute, Russian Academy of Sciences

Email: andrey.kalugin@iwp.ru
俄罗斯联邦, Moscow, 119333

N. Popova

Water Problems Institute, Russian Academy of Sciences

Email: andrey.kalugin@iwp.ru
俄罗斯联邦, Moscow, 119333

T. Millionshchikova

Water Problems Institute, Russian Academy of Sciences

Email: andrey.kalugin@iwp.ru
俄罗斯联邦, Moscow, 119333

参考

  1. Дунаева Е.А., Попович В.Ф., Ляшевский В.И. Анализ динамики количественных и качественных характеристик водных ресурсов с использованием открытых ГИС и агрогидрологических моделей // Науч. журн. РосНИИПМ. 2015. № 1 (17). С. 127–141.
  2. Землянскова А.А., Макарьева О.М., Нестерова Н.В., Федорова А.Д. Моделирование формирования сток горной реки Дерекойки (полуостров Крым) // Сб. докл. международ. науч. конф. памяти выдающегося русского ученого Ю.Б. Виноградова “Четвертые Виноградовские чтения. Гидрология: от познания к мировоззрению”. СПб.: Изд-во ВВМ, 2020. С. 78–83.
  3. Калугин А.С., Мотовилов Ю.Г., Попова Н.О., Миллионщикова Т.Д. Модели формирования стока рек горного Крыма // Свид. гос. регистрации программы для ЭВМ № 2023687573. 2023. Правообладатель ИВП РАН.
  4. Мотовилов Ю.Г., Гельфан А.Н. Модели формирования стока в задачах гидрологии речных бассейнов. М.: РАН, 2018. 300 с.
  5. Семенов В.А., Алешина М.А. Сценарные прогнозы изменений температурного и гидрологического режима Крыма в XXI веке по данным моделей климата CMIP6 // Вод. ресурсы. 2022. Т. 49. № 4. С. 506–516.
  6. Gelfan A.N., Gusev E.M., Kalugin A.S., Krylenko I.N., Motovilov Y.G., Nasonova O.N., Millionshchikova T.D., Frolova N.L. Runoff of Russian rivers under current and projected climate change. Rev. 2. Сlimate change impact on the water regime of Russian rivers in the XXI century // Water Resour. 2022. V. 49. № 3. P. 351–365.
  7. Gelfan A.N., Kalugin A.S., Motovilov Y.G. Assessing Amur water regime variations in the XXI century with two methods used to specify climate projections in river runoff formation model // Water Resour. 2018. V. 45. № 3. P. 307–317.
  8. Gupta H.V., Kling Y., Yilmaz K.K., Martinez G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling // J. Hydrol. 2009. V. 377. № 1–2. P. 80–91.
  9. Hempel S., Frieler K., Warszawski L., Schewe J., Piontek F. A trend-preserving bias correction – the ISI-MIP approach // Earth System Dynamics. 2013. V. 4. P. 219–236.
  10. Kalugin A. Future climate-driven runoff change in the large river basins in Eastern Siberia and the Far East using process-based hydrological models // Water. 2022. V. 14(4). № 609. P. 1–22.
  11. Kalugin A.S. River runoff in European Russia under global warming by 1.5 and 2 degrees // Water Resour. 2023. V. 50. № 4. P. 543–556.
  12. Poggio L., de Sousa L.M., Batjes N.H., Heuvelink G.B.M., Kempen B., Ribeiro E., Rossiter D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty // Soil. 2021. V. 7. P. 217–240.
  13. Svisheva I.A., Anisimov A.E. Numerical Modeling of Extreme Flash Flood in Yalta in September 2018 // Ecol. Safety Coastal and Shelf Zones of Sea. 2022. V. 3. P. 43–53.
  14. Takaku J., Tadono T., Doutsu M., Ohgushi F., Kai H. Updates of “AW3D30” ALOS global digital surface model with other open access datasets // Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020. P. 183–189.
  15. Zhang X., Liu L., Chen X., Gao Y., Xie S., Mi J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery // Earth System Sci. Data. 2021. V. 13. P. 2753–2776.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The share of precipitation P during the periods from November to April (a) and from May to October (b), estimated for the studied river basins for the period 2006–2020, the average annual runoff module M of the Crimean rivers in the studied sections, estimated for the period 2014–2020 (c).

下载 (204KB)
3. Fig. 2. Hydrometric posts, for which data on average daily discharges were used in modeling the formation of the runoff of the studied Crimean rivers: the Chernaya River – the village of Rodnikovskoye, the Alma River – above the Partizanskoye Reservoir, the Derekoyka River – the city of Yalta, the Salgir River – the village of Pionerskoye, the Burulcha River – the village of Mezhgorye, the Tonas River – the city of Belogorsk, the Kuchuk-Karasu River – the village of Bogatoye, the Indol River – the village of Topolevka, the Kokkozka River – the village of Aromat, the Kuchuk-Uzenbash River – the village of Mnogorechye. Weather stations: 33945 Pochtovoye, 33946 Aeroport, 33955 Simferopol, 33957 Kurortny, 33958 Angarsky Pass, 33959 Alushta, 33966 Belogorsk, 33973 Vladislavovka, 33976 Feodosia, 33990 Yalta, 33991 Sevastopol, 33994 Khersonessky Lighthouse, 33995 Nikita, 33998 Ai-Petri.

下载 (379KB)
4. Fig. 3. Anomalies of annual and seasonal values ​​of air temperature, precipitation and air humidity deficit for the mountainous territory of Crimea in the 21st century according to GCMs data under different RCP scenarios for the near future (left) and for the end of the 21st century (right) relative to the base period 2006–2020.

下载 (269KB)
5. Fig. 4. Anomalies of annual and seasonal river runoff values ​​in the Crimean mountains according to the results of hydrological modeling based on GCMs data under scenarios RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5 for the near future.

下载 (182KB)
6. Fig. 5. Anomalies of annual and seasonal river runoff values ​​in the mountainous Crimea according to the results of hydrological modeling based on GCMs data under scenarios RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5 at the end of the 21st century.

下载 (191KB)

版权所有 © Russian Academy of Sciences, 2024