Isotope specificity of Gentianaceae species in Holarctic high mountains

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Partial mycoheterotrophy (mixotrophy, supply of organic substances through mycorrhizal fungi) is widely spread in mycorrhizal angiosperms. We suggested that alpine species of Gentianaceae, which includes fully mycoheterotrophic species with arbuscular mycorrhiza, can be mixotrophic to a large extent. We studied isotopic (δ13С, δ15N, δ2H, and δ18O) and elemental (С and N) composition of leaves and roots for 13 pairs of alpine species (species of Gentianaceae and neighboring reference species – dycots with arbuscular mycorrhizas) in the three Holarctic mountain systems (the Alps, the Caucasus and Tibet). In contrary to our hypothesis, the organic matter of Gentianaceae leaves and roots was not enriched in 2H comparing with reference plants, which indicates the lack or low significance of mycoheterotrophy in the studies species. Leaves and roots of Gentianaceae had higher values of δ15N and δ18O, but lower values of δ13С and δ2H comparing with leaves and roots of reference plants. Leaves and roots of Gentianaceae contained more С, but N content in the leaves of Gentianaceae was higher and in the roots lower, than in the corresponding organs of reference plants. We suggested, that such the results may be explained by more intensive nitrogen fixation of procariots in the leaf microbioms, which supply better leaf nitrogen nutrition and their more intensive photosynthesis and transpiration.

Full Text

Restricted Access

About the authors

V. G. Onipchenko

Lomonosov Moscow State University; Teberda National Park; Aliev Karachay-Cherkess State University

Author for correspondence.
Email: vonipchenko@mail.ru
Russian Federation, Bldg. 12, 1, Leninskie Gory, Moscow, 119234; 1, Baduksky Lane, Teberda, Karachay-Cherkess Republic, 369210; 29, Lenin St., Karachayevsk, 369202

N. G. Lavrenov

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russian Federation, Bldg. 12, 1, Leninskie Gory, Moscow, 119234

Qian Wang

Chengdu Institute of Biology of the Chinese Academy of Sciences

Email: vonipchenko@mail.ru
China, 9, Renmin South Road, Chengdu, 610041

Yan Wu

Chengdu Institute of Biology of the Chinese Academy of Sciences

Email: vonipchenko@mail.ru
China, 9, Renmin South Road, Chengdu, 610041

A. V. Tiunov

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: vonipchenko@mail.ru
Russian Federation, 33, Leninsky Ave., Moscow, 119071

A. A. Klyukina

Vinogradsky Institute of Microbiology of the Russian Academy of Sciences

Email: vonipchenko@mail.ru
Russian Federation, 7/2, 60-letie Oktyabrya Ave., Moscow, 117312

S. M. Tsurikov

Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Email: vonipchenko@mail.ru
Russian Federation, 33, Leninsky Ave., Moscow, 119071

M. Yu. Ganin

Russian State Center for Animal Feed and Drug Standardization and Quality

Email: vonipchenko@mail.ru
Russian Federation, 5, Zvenigorodskoe Hwy, Moscow, 123022

A. A. Akhmetzhanova

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russian Federation, Bldg. 12, 1, Leninskie Gory, Moscow, 119234

Yu. V. Sofronov

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russian Federation, Bldg. 12, 1, Leninskie Gory, Moscow, 119234

T. G. Elumeeva

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russian Federation, Bldg. 12, 1, Leninskie Gory, Moscow, 119234

References

  1. Mabberley D.J. Mabberley’s plant-book. 4th ed. Cambridge: Cambridge UP, 2017. 1102 p.
  2. Merckx V.S.F.T., Freudenstein J.V., Kissling J. et al. Taxonomy and classification // Mycoheterotrophy: the biology of plants living on fungi. N.Y.: Springer, 2013. P. 19–101.
  3. Brada J.G.B., de Novais C.B., Diniz P.P. et al. Association of mycoheterotrophic Gentianaceae with specific Glomus lineages // Mycorrhiza. 2023. V. 33. № 4. P. 249–256.
  4. Cameron D.D., Bolin J.F. Isotopic evidence of partial mycoheterotrophy in the Gentianaceae: Bartonia virginica and Obolaria virginica as case studies // Am. J. Bot. 2010. V. 97. P. 1272–1277.
  5. Struwe L., Kadereit J.W., Klackenberg J. et al. Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification // Gentianaceae – systematics and natural history. Cambridge: Cambridge University Press, 2002. P. 21–301.
  6. Molina J., Struwe L. Utility of secondary structure in phylogenetic reconstructions using nrDNA ITS sequences – an example from Potalieae (Gentianaceae: Asteridae) // Systematic Bot. 2009. V. 34. P. 414–428.
  7. Suetsugu K., Matsubayashi J., Ogawa N.O. et al. Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species // Oecologia. 2020. V. 192. № 4. P. 929–937
  8. Онипченко В.Г., Лавренов Н.Г., Тиунов А.В. и др. Миксотрофны ли альпийские растения из семейства Gentianaceae? // Журн. общ. биол. 2021. Т. 82. № 1. C. 57–67. [Onipchenko V.G., Lavrenov N.G., Tiunov A.V. et al. Are alpine Gentianaceae plants mixotrophic? // Biol. Bull. Rev. 2021. V. 11. № 5. P. 429–437.]
  9. Jacquelinet-Jeanmougin J., Gianinazzi-Pearson V., Gianinazzi S. Endomycorrhizas in the Gentianaceae. II. Ultrastructural aspects of symbiont relationships in Gentiana lutea // Symbiosis. 1987. V. 3. P. 269–286.
  10. Sýkorová Z. The role of arbuscular mycorrhiza in the growth and development of plants in the family Gentianaceae // The Gentianaceae. Vol.1: Characterization and ecology. Berlin, Heidelberg: Springer, 2014. P. 303–316.
  11. Giesemann P.P., Rasmussen H.N., Liebel H.T. et al. Descreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhizal // New Phytologist. 2020. V. 226. № 4. P. 960–966.
  12. Yamato M., Suzuki T., Matsumoto M. et al. Mycoheterotrophic seedling growth of Gentiana zollingeri, a photosynthetic Gentianaceae plant species, in symbioses with arbuscular mycorrhizal fungi // J. Plant Res. 2021. V. 134. № 5. P. 921–931.
  13. Yamato M., Yagita M., Kusakabe R. et al. Impact of mycoheterotrophy on growth of Gentiana zollingeri (Gentianaceae), as suggested by size variation, morphology, and 13C abundance of flowering shoots // J. Plant Res. 2023. V. 136. № 6. P. 853–863.
  14. Gomes S.I.F., Merckx V.S.F.T., Kehl J. et al. Mycoheterotrophic plants living on arbuscular mycorrhizal fungi are generally enriched in 13C, 15N and 2H isotopes // J. Ecol. 2020. V. 108. № 4. P. 1250–1261.
  15. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. URL https://www.R-project.org/.
  16. Schwarzer G., Carpenter J.R., Rücker G. Meta-analysis with R. Cham, Heidelberg, New York, Dordrecht, London: Springer, 2015. 252 p. https://doi.org/10.1007/978-3-319-21416-0
  17. Balduzzi S., Rucker G., Schwarzer G. How to perform a meta-analysis with R: a practical tutorial // Evidence-Based Mental Health. 2019. V. 22. P. 153–160.
  18. Ma S., He F., Tian D. et al. Variation and determinants of carbon content in plants: a global synthesis // Biogeosciences. 2018. V. 15. P. 693–702.
  19. Farquhar G.D., O’Leary M.H., Berry J.A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves // Austral. J. Plant Physiol. 1982. V. 9. № 2. P. 121–137.
  20. Huck C., Körner C., Hiltbrunner E. Plant species dominance shifts across erosion edge-meadow transects in the Swiss Alps // Oecologia. 2013. V. 171. № 3. P. 693–703.
  21. Ghashghaie J., Badeck F.W. Opposite carbon isotope discrimination during dark respiration in leaves versus roots – review // New Phytol. 2014. V. 201. № 3. P. 751–769.
  22. Jayne B., Quigley M. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis // Mycorrhiza. 2014. V. 24. № 2. P. 109–119.
  23. Auge R.M., Toler H.D., Saxton A.M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis // Mycorrhiza. 2015. V. 25. № 1. P. 13–24.
  24. Courty P.-E., Walder F., Boller T. et al. Carbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis // Plant Physiol. 2010. V. 156. № 2. P. 952–961.
  25. Hynson N.A., Bidartondo M.I., Read D.J. Are there geographical mosaics of mycorrhizal specificity and partial mycoheterotrophy? A case study in Moneses uniflora // New Phytol. 2015. V. 208. № 4. P. 1003–1007.
  26. Wanek W., Arndt S.K. Difference in δ15N signature between nodulated roots and shoots of soybean is indicative of the contribution of symbiotic N2 fixation to plant N // J. Exp. Bot. 2002. V. 53. № 371. P. 1109–1118.
  27. Yoneyama T., Ito O., Engelaar W.M.H.G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years // Phytochemistry Rev. 2003. V. 2. P. 121–132.
  28. Сui J., Lamade E., Fourel F. et al. δ15N values in plants are determined by both nitrate assimilation and circulation // New Phytol. 2020. V. 226. № 6. P. 1696–1707.
  29. Hurek T., Handley L., Reinhold-Hurek B. et al. Does Azoarcus sp. fix nitrogen with monocots? // Biological nitrogen fixation for the 21st century. Dordrecht: Kluwer, 1998. P. 407.
  30. Montañez A., Abreu C., Gill P.R. et al. Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope dilution and identification of associated culturable diazotrophs // Biol. Fertility Soils. 2009. V. 45. № 3. P. 253–263.
  31. Bulgarelli D., Schlaeppi K., Spaepen S. et al. Structure and functions of the bacterial microbiota of plants // Ann. Rev. Plant Biol. 2013. V. 64. P. 807–838.
  32. Hou Q., Chen D., Wang Y.-P. et al. Analysis of endophyte diversity of Gentiana officinalis among different tissue types and ages and their association with four medicinal secondary metabolites // Peer J. 2022. V. 10. Art. e13949. P. 1–18.
  33. Hou Q., Chen D., Wang Y.-P. et al. Analysis of endophyte diversity of two Gentiana plants species and the association with secondary metabolite // BMC Microbiology. 2022. V. 22. № 90. P. 1–10.
  34. Wu X., Yang Y., Zhang H. Microbial fortification of pharmacological metabolites in medical plants // Computational Structural Biotechnol. J. 2023. V. 21. P. 5066–5072.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mean difference between G- and R-plants in carbon C and nitrogen N content in leaves and roots (meta-analysis results). Here and in Figs. 2 and 3: p is the level of significance according to the inverse variance method for individual pairs of species and according to the random effects model for all pairs (All); the order of species from top to bottom corresponds to the order of species in Table 1; the size of the symbols is proportional to the magnitude of the inverse variance, whiskers show the 95% confidence interval, and a positive difference indicates that the trait value of a plant from the G group is greater than that of a plant from the R group.

Download (157KB)
3. Fig. 2. Mean difference between G- and R-plants in δ13C and δ15N values in leaves and roots (meta-analysis results).

Download (153KB)
4. Fig. 3. Mean difference between G- and R-plants in δ2H and δ18O values in leaves and roots (meta-analysis results). Pairs with the reference species Campanula scheuchzeri are combined into one group.

Download (81KB)

Copyright (c) 2025 Russian Academy of Sciences