Thermoperiodic effect on the induction of progeny diapause in Trichogramma telengaiSor. (Hymenoptera, Trichogrammatidae) females: correction but not replacement of photoperiod

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In uence of constant temperatures (15, 20, 25 and 30 °C) and thermoperiods (daily alternation of high (25 or 30 °C) and low (15 or 20 °C) temperature periods) on the maternal induction of progeny diapause was studied in females of the egg parasitoid Trichogramma telengai Sor. (Hymenoptera, Trichogrammatidae) under laboratory conditions. Two variants of each thermoperiod were tested: “short-day” (both thermophase and cryophase durations were 12 h) and “long-day” (thermophase and cryophase durations were 18 and 6 h, correspondingly). In addition, constant temperatures equal to the means of all thermoperiods were tested. The experiments showed that thermoperiods as well as constant temperatures have a substantial impact on the maternal photoperiodic response both in the interaction with various photoperiods and under constant darkness. However, T. telengai are evidently not able to perceive thermoperiods as a source of information on day length (and thereby on time of year).

作者简介

N. Voinovich

Зоологический институт РАН

Email: nataliavoinovitch@hotmail.com

S. Reznik

Зоологический институт РАН

Email: reznik1952@mail.ru

参考

  1. Горышин Н. И., Козлова Р. Н. 1967. Термопериодизм как фактор в развитии насекомых. Журнал общей биологии 28 (З): 278-288.
  2. Данилевский А. С. 1961. Фотопериодизм и сезонное развитие насекомых. Л.: Издательство ЛГУ, 244 с.
  3. Заславский В. А. 1984. Фотопериодический и температурный контроль развития насекомых. Л.: Наука, 180 с.
  4. Заславский В. А., Умарова Т. Я. 1981. Фотопериодический и температурный контроль диапаузы у Trichogramma evanescens Westw. (Hymenoptera, Trichogrammatidae). Энтомологическое обозрение 60 (4): 721-731.
  5. Май Фу Кви, Заславский В. А. 1983. Фотопериодические и температурные реакции Trichogramma euproctidis (Hymenoptera, Trichogrammatidae). Зоологический журнал 62 (11): 1676-1680.
  6. Резник С. Я. 2011. Экологические и эволюционные аспекты фототермической регуляции диапаузы у трихограмм. Журнал эволюционной биохимии и физиологии 47 (6): 434-443. https://www.elibrary.ru/item.asp?id=17047001
  7. Саулич А. Х., Волкович Т. А. 2004. Экология фотопериодизма насекомых. СПб.: Издательство СПбГУ, 276 с.
  8. Сорокина А. П. 2011. Применение трихограммы: прошлое и настоящее. Защита и карантин растений 10: 9-12. https://cyberleninka.ru/article/n/primenenie-trihogrammy-proshloe-i-nastoyaschee
  9. Beck S. D. 1982. Thermoperiodic induction of larval diapause in the European corn borer, Ostrinia nubilalis. Journal of Insect Physiology 28 (3): 273-277. https://doi.org/10.1016/0022-1910(82)90087-7
  10. Beck S. D. 1983. Insect thermoperiodism. Annual Review of Entomology 28 (1): 91-108. https://www.annualreviews.org/doi/abs/10.1146/annurev.en.28.010183.000515
  11. Boivin G. 1994. Overwintering strategies of egg parasitoids. In: E. Wajnberg, S. A. Hassan (eds). Biological Control with Egg Parasitoids. Wallingford, UK: CAB International, p. 219-244.
  12. Claret J., Carton Y. 1980. Diapause in a tropical species, Cothonaspis boulardi (Parasitic Hymenoptera). Oecologia 45 (1): 32-34. https://link.springer.com/article/10.1007/BF00346703
  13. Danks H. V. 2007. The elements of seasonal adaptations in insects. The Canadian Entomologist 139 (1): 1-44. https://doi.org/10.4039/n06-048
  14. Delava E., Fleury F., Gibert P. 2016. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association. Journal of Thermal Biology 60: 95-102. https://doi.org/10.1016/j.jtherbio.2016.06.012
  15. Denlinger D. L. 2002. Regulation of diapause. Annual Review of Entomology 47: 93-122. https://doi.org/10.1146/annurev.ento.47.091201.145137
  16. Denlinger D. L. 2022. Insect Diapause. Cambridge: Cambridge University Press, 454 p.
  17. Menaker M., Gross G. 1965. Effect of fluctuating temperature on diapause induction in the pink bollworm. Journal of Insect Physiology 11 (7): 911-914. https://doi.org/10.1016/0022-1910(65)90194-0
  18. Numata H., Saulich A. H., Volkovich T. A. 1993. Photoperiodic responses of the linden bug, Pyrrhocoris apterus, under conditions of constant temperature and under thermoperiodic conditions. Zoological Science 10 (3): 521-527. https://dl.ndl.go.jp/info:ndljp/pid/10860643
  19. Reznik S. Ya., Vaghina N. P., Voinovich N. D. 2011. Maternal influence on diapause induction in Trichogramma (Hymenoptera, Trichogrammatidae): the dynamics of photosensitivity. Journal of Applied Entomology 135 (6): 438-445. https://doi.org/10.1111/j.1439-0418.2010.01563.x
  20. Reznik S. Y., Voinovich N. D. 2016. Diapause induction in Trichogramma telengai: the dynamics of maternal thermosensitivity. Physiological Entomology 41 (4): 335-343. https://doi.org/10.1111/phen.12149
  21. Reznik S. Y., Voinovich N. D., Samartsev K. G. 2020. Grandmaternal temperature effect on diapause induction in Trichogramma telengai (Hymenoptera: Trichogrammatidae). Journal of Insect Physiology 124: 104072. https://doi.org/10.1016/j.jinsphys.2020.104072
  22. Rock G. C. 1983. Thermoperiodic effects on the regulation of larval diapause in the tufted apple budworm (Lepidoptera: Tortricidae). Environmental Entomology 12 (5): 1500-1503. https://doi.org/10.1093/ee/12.5.1500
  23. Saunders D. S. 1973. Thermoperiodic control of diapause in an insect: theory of internal coincidence. Science 181 (4097): 358-360. https://doi.org/10.1126/science.181.4097.358
  24. Saunders D. S. 1984. Photoperiodic time measurement in Sarcophaga argyrostoma: an attempt to use daily temperature cycles to distinguish external from internal coincidence. Journal of Comparative Physiology A 154 (6): 789-794. https://link.springer.com/article/10.1007/BF00610679
  25. Saunders D. S. 2014. Insect photoperiodism: effects of temperature on the induction of insect diapause and diverse roles for the circadian system in the photoperiodic response. Entomological Science 17 (1): 25-40.https://doi.org/10.1111/ens.12059
  26. Saunders D. S. 2020. Insect photoperiodism: Seasonal development on a revolving planet. European Journal of Entomology 117 (1): 328-342. https://doi.org/10.14411/eje.2020.038
  27. Saunders D. S., Steel C. G. H., Vafopoulou X., Lewis R. D. 2002. Insect Clocks. Amsterdam: Elsevier, 560 p.
  28. Smith S. M. 1996. Biological control with Trichogramma: advances, successes, and potential of their use. Annual Review of Entomology 41: 375-406. https://doi.org/10.1146/annurev.en.41.010196.002111
  29. Tauber M. J., Tauber C. A., Masaki S. 1986. Seasonal Adaptations of Insects. New York: Oxford University Press, 411 p.
  30. Takano Y., Goto S. G., Gotoh T. 2021. Diapause induction in Eotetranychus smithi (Acari: Tetranychidae): effect of average temperature, but not of thermoperiod. Physiological Entomology 46 (1): 8-15. https://doi.org/10.1111/phen.12335
  31. Vaghina N. P., Voinovich N. D., Reznik S. Ya. 2014. Maternal thermal and photoperiodic effects on the progeny diapause in Trichogramma telengai Sorokina (Hymenoptera: Trichogrammatidae). Entomological Science 17 (2): 198-206. https://doi.org/10.1111/ens.12045
  32. Voinovich N. D., Vaghina N. P., Reznik S. Ya. 2013. Comparative analysis of maternal and grand-maternal photoperiodic responses of Trichogramma species (Hymenoptera: Trichogrammatidae). European Journal of Entomology 110 (3): 451-460.
  33. Voinovich N. D., Reznik S. Y., Vaghina N. P. 2015. Maternal thermal effect on diapause in Trichogramma species (Hymenoptera: Trichogrammatidae). Journal of Applied Entomology 139 (10): 783-790. https://doi.org/10.1111/jen.12214
  34. Zaslavski V. A., Umarova T. Ya. 1990. Environmental and endogenous control of diapause in Trichogramma species. Entomophaga 35 (1): 23-29. https://doi.org/10.1007/BF02374297

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023