LARGE-SCALE ROSSBY WAVES IN ROTATING SPACE AND ASTROPHYSICAL PLASMA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The theory of large-scale flows of rotating incompressible fully ionized plasma is developed taking into account the Hall effect in the beta plane approximation for Coriolis force. The Coriolis force is considered for each component of the plasma. In the beta-plane approximation, the Coriolis force is expressed in a local Cartesian coordinate system tied to a fixed point on a sphere, becoming inhomogeneous and thus leading to the beta-effect in both the equation of motion and the electromagnetic field equation. Analysis of linear flows in quasi-two-dimensional approximation has been conducted, demonstrating that in a rotating, fully ionized plasma on a sphere, a new type of flow emerges — the electron Rossby wave, along with hydrodynamic Rossby waves of neutral fluid. The restoring force of such waves is the inhomogeneity of the vertical component of the angular velocity of rotation on the sphere.

About the authors

D. A Koshkina

Space Research Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: kashkina.da@phystech.edu
Moscow, Russian Federation; Moscow, Russian Federation

T. V Galstyan

Space Research Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: galsyam.tigran@phystech.edu
Moscow, Russian Federation; Moscow, Russian Federation

D. A Klimachkov

Space Research Institute of the Russian Academy of Sciences

Email: klimachkovdmitry@gmail.com
Moscow, Russian Federation

A. S Petrosyan

Space Research Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: apertosv@cosmos.ru
Moscow, Russian Federation; Moscow, Russian Federation

References

  1. Petrosyan A., Klimachkov D., Fedotova M., and Zinyakov T. // Atmosphere. 2020. V. 11(4). P. 16. https://doi.org/10.3390/atmos11040314
  2. Fedotova M., Klimachkov D., and Petrosyan A. // Universe. 2021. V. 7(4). P. 87. https://doi.org/10.3390/universe7040087
  3. Петросян А.С., Федотова М.А., Климачков Д.А. // Физика плазмы. 2023. Т. 49. С. 209. https://doi.org/10.31857/S0367292122601229
  4. Ilgisonis V.I. // Plasma Phys. Control. Fusion. 2001. V. 43. P. 1255. https://doi.org/10.1088/0741-3335/43/9/307
  5. Huba J.D. // Lect. Notes. Phys. 2003. V. 615. P. 166. https://doi.org/10.1007/3-540-36530-3_9
  6. Морозов А.Н. Введение в плазмодинамику. М.: Физматлит, 2006.
  7. Галстян Т.В., Кошкина Д.А., Климачков Д.А., Петросян А.С. // Физика плазмы. 2024. Т. 50(9). С. 1164. https://doi.org/10.1134/S1063780X24601159
  8. Петвиашвили В.И., Похотелов О.А. Уединенные волны в плазме и атмосфере. М.: Энергоатомиздат, 1989.
  9. Незлин М.В. Вихри Россби и спиральные структуры: Астрофизика и физика плазмы в опытах на мелкой воде. М.: Наука, 1990.
  10. Должанский Ф.В. Основы геофизической гидродинамики. М.: Физматлит, 2016.
  11. Климачков Д.А., Петросян А.С. // ЖЭТФ. Т. 152(4). С. 705. https://doi.org/10.7868/S004445101710008X
  12. Климачков Д.А., Петросян А.С. // ЖЭТФ. Т. 154(6). С. 1239. https://doi.org/10.1134/S0044451018120180
  13. Федотова М.А., Климачков Д.А., Петросян А.С. // Физика плазмы. 2020. Т. 46(1). С. 57. https://doi.org/10.31857/S0367292120010072
  14. Федотова М.А., Петросян А.С. // ЖЭТФ. 2020. Т. 158(2). С. 374. https://doi.org/10.31857/S0044451020120172
  15. Fedotova M., Klimachkov D., and Petrosyan A. // Monthly Notes R. Astron. Soc. 2022. V. 509(1). P. 312. https://doi.org/10.1093/mnras/stab2957
  16. Zaqarashvili T.V., Albekioni M., Ballester J.L., Bekki Y., Biancofiore L., Birch A.C., Dikpati M., Gizon L., Gurgenashvili E., Heifetz E., Lanza A.F., McIntosh S.W., Ofman L., Oliver R., Proxauf B., Umurhan O.M., and Yellin-Bergovoy R. // Space Sci. Rev. 2021. V. 217. P. 15. https://doi.org/10.1007/s11214-021-00790-2
  17. McIntosh S., Cramer W., Pichardo Marcano M., and Leamon R. // Nat. Astron. 2017. V. 1. P. 0086. https://doi.org/10.1038/s41550-017-0086
  18. Dikpati M., Cally P.S., McIntosh S.W., and Heifetz E. // Sci. Reps. 2017. V. 7. P. 14750. https://doi.org/10.1038/s41598-017-14957-x
  19. Dikpati M., McIntosh S.W., Bothun G., Cally P.S., Ghosh S.S., Gilman P.A., and Umurhan O.M. // Astrophys. J. 2018. V. 853. P. 144. https://doi.org/10.3847/1538-4357/aaa70d
  20. Dikpati M., Gilman P.A., Chatterjee S., McIntosh S.W., and Zaqarashvili T.V. // Astrophys. J. 2020. V. 896. P. 141. https://doi.org/10.3847/1538-4357/ab8b63
  21. Dikpati M., McIntosh S.W., and Wing S. // Frontiers Astron. Space Sci. 2021. V. 8. P. 71. https://doi.org/10.3389/fspas.2021.688604
  22. Zaqarashvili T.V., Oliver R., Ballester J.L., and Shergelashvili B.M. // Astron. Astrophys. 2007. V. 470. P. 815. https://doi.org/10.1051/0004-6361:20077382
  23. Gachechiladze T., Zaqarashvili T.V., Gurgenashvili E., Ramishvili G., Carbonell M., Oliver R., and Ballester J.L. // ApJ. 2019. V. 874. A. 162. https://doi.org/10.3847/1538-4357/ab0955
  24. Dikpati M., and McIntosh S.W. // Space Weather. 2020. V. 18(3). https://doi.org/10.1029/2018SW002109
  25. Horiemann G.M., Mamatsashvili G., Giesecke A., Zaqarashvili T.V., and Stefani F. // Astrophys. J. V. 944. P. 48. https://doi.org/10.3847/1538-4357/aca278
  26. Зиняков Т.А., Петросян А.С. // Письма ЖЭТФ. 2018. Т. 108(2). С. 75. https://doi.org/10.1134/S0370274X18140011
  27. Зиняков Т.А., Петросян А.С. // Письма ЖЭТФ. 2020. Т. 111(2). С. 65. https://doi.org/10.31857/S0370274X20020034
  28. Кингсеп А.С., Чукбар К.В., Яньков В.В. // Вопросы теории плазмы / Под ред. Б.Б. Кадомцева. М.: Энергоатомиздат, 1987. Вып. 16. С. 209.
  29. Gordeev A.V., Kingsep A.S., and Rudakov L.I. // Phys. Reps. 1994. V. 243(5). P. 215. https://doi.org/10.1016/0370-1573(94)90097-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences