Optical pumping of rubidium isotopes by Cr3+:BeAl2O4 laser radiation
- 作者: Antipov A.A.1, Putilov A.G.1, Shepelev A.E.1
-
隶属关系:
- Institute on Laser and Information Technologies of the Federal Scientific Research Centre “Crystallography and photonics” of Russian Academy of Sciences
- 期: 卷 87, 编号 11 (2023)
- 页面: 1614-1618
- 栏目: Articles
- URL: https://journals.eco-vector.com/0367-6765/article/view/654562
- DOI: https://doi.org/10.31857/S0367676523702794
- EDN: https://elibrary.ru/FQSUWV
- ID: 654562
如何引用文章
详细
We consider the use of a Cr3+:BeAl2O4 laser in free-running operating as a source of emission for optical pumping rubidium alkali metal vapors. The use of dispersive elements in the composition of the laser cavity makes it possible to smoothly tune lasing wavelength and to realize generation at wavelengths corresponding to the D1 and D2 lines of the 85Rb and 87Rb isotopes. Optical pumping of rubidium isotopes by laser emission with wavelengths of 795 and 780 nm, respectively, is experimentally implemented, and their fluorescence is demonstrated. The question of using a wavelength-tunable laser in the method of spin-exchange optical pumping of noble gases is discussed.
作者简介
A. Antipov
Institute on Laser and Information Technologies of the Federal Scientific Research Centre“Crystallography and photonics” of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: antiplit@yandex.ru
Russia, 140700, Shatura
A. Putilov
Institute on Laser and Information Technologies of the Federal Scientific Research Centre“Crystallography and photonics” of Russian Academy of Sciences
Email: antiplit@yandex.ru
Russia, 140700, Shatura
A. Shepelev
Institute on Laser and Information Technologies of the Federal Scientific Research Centre“Crystallography and photonics” of Russian Academy of Sciences
Email: antiplit@yandex.ru
Russia, 140700, Shatura
参考
- Григорьев Г.Ю., Набиев Ш.Ш. // Хим. физика. 2018. Т. 37. № 5. С. 3.
- Panayiotis N., Coffey A.M., Ranta K. et al. // J. Phys. Chem. B. 2014. V. 118. No. 18. P. 4809.
- Rohan S., John C., Wang Z. et al. // Sci. Reports. 2020. V. 10. P. 1.
- Albert M.S., Catesf G.D., Driehuyst B. et al. // Lett. Nature. 1994. V. 370. P. 199.
- Roos J., Mcadams H.P., Kaushik S.S. at al. // Magn. Res. Imaging Clin. North Amer. 2015. V. 23. No. 2. P. 217.
- Gaede H.C., Song Y.Q., Taylor R.E. at al. // Appl. Magn. Res. 1995. V. 8. P. 373.
- Григорьев Г.Ю., Лагутин А.С. // ЖТТ. 2022. Т. 92. № 9. С. 1277; Grigoriev G.Y., Lagutin A.S. // Tech. Phys. 2022. V. 67. No. 9. P. 1089.
- Happer W., Miron E., Schaefer S. et al. // Phys. Rev. A. 1984. V. 29. P. 3092.
- Appelt S., Ben-Amar Baranga A., Erickson C. et al. // Phys. Rev. A. 1998. V. 58. No. 2. P. 1412.
- Kelley M., Branca R. // Appl. Phys. 2021. V. 129. Art. No. 154901.
- Walker T., Happer W. // Rev. Mod. Phys. 1997. V. 69. No. 2. P. 629.
- Driehuys B., Cates G.D. et al. // Appl. Phys. Lett. 1996. V. 69. P. 1668.
- Nikolaou P., Whiting N., Eschmann N.A. et al. // J. Magn. Res. 2009. 197. P. 249.
- Демкин В., Демкин А., Шадрин М. // Фотоника. 2012. № 3. С. 33.
- Siddons P., Adams C.S., Ge C., Hughes I.G. // J. Physics B. 2008. V. 41. No. 15. Art. No. 155004.
- Banerjee A., Das D., Natarajan V. // Europhys. Lett. 2004. V. 65. No. 2. P. 172.
- Volodin B.L., Dolgy S.V., Melnik E.D., Downs E. // Opt. Lett. 2004. V. 29. No. 16. P. 1891.
- Whiting N., Nikolaou P., Eschmann N.A. et al. // Appl. Phys. B. 2012. V. 106. No. 4. P. 775.
- Антипов А.А., Путилов А.Г., Осипов А.В., Шепелев А.Е. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1593; Antipov A.A., Putilov A.G., Osipov A.V., Shepelev A.E. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 1359.
- Putilov A.G., Antipov A.A., Shepelev A.E. et al. // J. Phys. Conf. Ser. 2021. V. 1822. Art. No. 012016.
- Putilov A.G., Antipov A.A., Shepelev A.E. et al. // J. Phys. Conf. Ser. 2019. V. 1331. Art. No. 012016.
- https://steck.us/alkalidata/rubidium85numbers.pdf.
- https://steck.us/alkalidata/rubidium87numbers.pdf.
补充文件
