Оптическая динамика суперкристалла квантовых излучателей V-типа: влияние дефазировки электронных состояний

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведено теоретическое исследование оптического отклика двумерного суперкристалла (монослоя) квантовых излучателей с дублетом в возбужденном состоянии на действие непрерывного внешнего поля с учетом дефазировки электронных состояний системы. Вторичное поле, действующее на V-излучатель со стороны других V-излучателей системы, формирует их нелинейность и обеспечивает внутреннюю положительную обратную связь, что приводит к бистабильности, периодическим и апериодическим автоколебаниям и в том числе хаотическому поведению. При наличии дефазировки мультистабильность оптического отклика сохраняется. Фазовая релаксация приводит к изменению сценария динамики системы от хаоса к периодическим осцилляциям амплитуды поля, т. е. к бифуркации «хаос — предельный цикл» и уменьшению отражательной способности монослоя в линейном и нелинейном режимах.

Полный текст

Доступ закрыт

Об авторах

Д. Я. Байрамдурдыев

Башкирский государственный педагогический университет им. М. Акмуллы

Email: rfmalikov@mail.ru
Россия, Уфа

Р. Ф. Маликов

Башкирский государственный педагогический университет им. М. Акмуллы

Автор, ответственный за переписку.
Email: rfmalikov@mail.ru
Россия, Уфа

Список литературы

  1. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. P. 666.
  2. Neto A.H.C., Guinea F., Peres N.M.R. et al. // Rev. Mod. Phys. 2009. V. 81. P. 109.
  3. Manzeli S., Ovchinnikov D., Pasquier D. et al. // Nat. Rev. Mater. 2017. V. 2. P. 17033.
  4. Чернозатонский Л.А., Артюх А.А. // УФН 2018. Т. 188. С. 3; Chernozatonskii L.A., Artyukh A.A. // Phys. Usp. 2018. V. 61. P. 2.
  5. Back P., Zeytinoglu S., Ijaz A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037401.
  6. Scuri G., Zhou Y., High A. A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037402.
  7. Bonaccorso F., Lombardo A., Hasan T. et al. // Mater. Today. 2012. V. 15. P. 564.
  8. Bhimanapati G.R., Lin Z., Meunier V. et al. // ACS Nano. 2015. V. 9. Art. No. 11509.
  9. Tan C., Cao X., Wu X.J. et al. // Chem. Rev. 2017. V. 117. P. 6225.
  10. Solntsev A.S., Agarwal G.S., Kivshar Y.S. // Nature Photon. 2021. V. 15. P. 327.
  11. Jariwala D., Marks T.J., Hersam M.C. // Nature Mater. 2017. V. 16. P. 170.
  12. Evers W.H., Goris B., Bals S. et al. // Nano Lett. 2013. V. 13. P. 2317.
  13. Baranov A.V., Ushakova E.V., Golubkov V.V. et al. // Langmuir. 2015. V. 31. P. 506.
  14. Ushakova E.V., Cherevkov S.A., Litvin A.P. et al. // J. Phys. Chem. 2016. V. 120. P. 25061.
  15. Liu W., Luo X., Bao Y. et al. // Nature Chem. 2017. V. 9. P. 563.
  16. Mu P., Zhou G., Chen C.L. // Nano-Struct. NanoObjects. 2018. V. 15. P. 153.
  17. Бабина О.Ю., Глазов С.Ю., Федулов И.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 30; Babina O.Yu., Glazov S.Yu., Fedulov I.N. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 22.
  18. Самарцев В.В., Митрофанова Т.Г., Хасанов О.Х. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 302; Samartsev V.V., Mitrofanova T.G., Khasanov O.Kh. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 216.
  19. Zheludev N.I. // Science. 2010. V. 328. P. 582.
  20. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // Phys. Rev. A. 2019. V. 100. No. 3. Art. No. 033820.
  21. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // J. Optics. 2021. V. 23. Art. No. 115102.
  22. Байрамдурдыев Д.Я., Маликов Р.Ф., Рыжов И.В., Малышев В.А. // ЖЭТФ. 2020. Т. 158. № 2(8). С. 269; Bairamdurdyev D.Ya., Malikov R.F., Ryzhov I.V., Malyshev V.A. // JETP. 2020. V. 131. No. 2. P. 244.
  23. Маликов Р.Ф. Математическое моделирование кооперативных когерентных эффектов в спектроскопии: монография. Уфа: Изд-во «Гилем», 2006. — 206 с.
  24. Федянин В.В., Каримуллин К.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 361.
  25. Efros Al.L., Rosen M., Kuno M. et al. // Phys. Rev. B. 1996. V. 54. No. 7. P. 4843.
  26. Stufler S., Machnikowski P., Ester P. et al. // Phys. Rev. B. 2006. V. 73. Art. No. 125304.
  27. Dicke R.H. // Phys. Rev. 1954. V. 93. P. 99.
  28. Маликов Р.Ф., Трифонов Е.Д., Зайцев А.И. // ЖЭТФ. 1979. T. 76. С. 65; Malikov R.F., Trifonov E.D., Zaitsev A.I. // Sov. Phys. JETP. 1979. V. 49. P. 33.
  29. Benedict M.G., Ermolaev A.M., Malyshev V.A. et al. Super-radiance: multiatomic coherent emission. Bristol: IOP Publ., 1996.
  30. Andronov A.A., Vitt A.A., Khaikin S.E. Theory of oscillators. New York: Pergamon Press, 1966.
  31. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Berlin: Springer, 1986.
  32. Ding F., Bozhevolnyi S.I. // Mater. Today. 2023. V. 71. P. 63.
  33. Тимощенко Е.В. Моделирование нелинейной динамики материального отклика плотных оптических слоев на резонансное излучение: монография. Могилев: МГУ им. А. А. Кулешова, 2023. 236 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема энергетических уровней и переходов квантового V-излучателя

Скачать (48KB)
3. Рис. 2. Стационарные решения при учете фазовой релаксации

Скачать (143KB)
4. Рис. 3. Динамика и спектр оптического отклика суперкристалла при наличии фазовой релаксации

Скачать (394KB)
5. Рис. 4. Влияние дефазировки на линейный коэффициент отражения R, являющийся функцией отстройки от резонанса Δ31. Значение дублетного расщепления Δ32 = 200

Скачать (112KB)
6. Рис. 5. Нелинейный коэффициент отражения R суперкристалла от интенсивности при разных значениях Г дефазировки энергетических состояний. Темные (красные) линии отвечают устойчивым (неустойчивым) участкам коэффициента отражения R

Скачать (114KB)

© Российская академия наук, 2024