Electron-stimulated luminescence of polycyclic aromatic hydrocarbons under ultrasonic influence on terbium sulfate suspensions in solutions of these hydrocarbons in decane

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the sonotriboluminescence spectra (luminescence arising in suspensions during sonication with intense collisions and destruction of crystals) of lanthanide salts in decane containing polycyclic aromatic hydrocarbons, emission bands of molecules of these hydrocarbons were recorded. Luminescence of aromatic hydrocarbons in suspensions is caused by their excitation by electrons.

作者简介

N. Panova

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

A. Tukhbatullin

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: adiska0501@gmail.com
Ufa, 450075 Russia

G. Sharipov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

参考

  1. Birks J.B. The theory and practice of scintillation counting: International series of monographs in electronics and instrumentation. London: Pergamon, 1964. 684 p.
  2. Berlman I.B. Handbook of florescence spectra of aromatic molecules. N.Y.: Academic Press, 1971. 473 p.
  3. Tao Y., Yang C., Qin J. // Chem. Soc. Rev. 2011. V. 40. P. 2943.
  4. Albers P.H. // in: Handbook of ecotoxicology. CRC Press, 2002. P. 365.
  5. Okparanma R.N., Mouazen A.M. // Appl. Spectrosc. Rev. 2013. V. 48. P. 458.
  6. Шамирзаев В.Т., Гайслер В.А., Шамирзаев Т.С. // Изв. РАН. Cер. физ. 2015. Т. 79. С. 186; Shamirzaev V.T., Gaisler V.A., Shamirzaev T.S. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. P. 165.
  7. Eddingsaas N.C., Suslick K.S. // Nature. 2006. V. 444. P. 163.
  8. Eddingsaas N.C., Suslick K.S. // J. Amer. Chem. Soc. 2007. V. 129. P. 6718.
  9. Шарипов Г.Л., Абдрахманов А.М., Тухбатуллин А.А. // Пиcьма в ЖТФ. 2009. Т. 35. № 10. С. 25; Sharipov G.L., Abdrakhmanov A.M., Tukhbatullin A.A. // Tech. Phys. Lett. 2009. V. 35. P. 452.
  10. Tukhbatullin A.A., Sharipov G.L., Burangulova N.F. et al. // Ultrason. Sonochem. 2019. V. 50. P. 251.
  11. Tukhbatullin A.A., Sharipov G.L., Burangulova N.F. // J. Mol. Liq. 2019. V. 289. Art. No. 110973.
  12. Tukhbatullin A.A., Sharipov G.L. // Appl. Spectrosc. 2022. V. 76. P. 1216.
  13. Tukhbatullin A.A., Panova N.A., Galimov D.I. et al. // Molecules. 2023. V. 28. Art. No. 7932.
  14. Bayrakceken F., Keskin A.U. // Asian J. Spectrosc. 2004. V. 8. P. 9.
  15. Koban W., Koch J.D., Hanson R.K. et al. // Phys. Chem. Chem. Phys. 2004. V. 6. P. 2940.
  16. Tukhbatullin A.A., Sharipov G.L., Galina A.A. // Luminescence. 2018. V. 33. P. 1180.
  17. Курлов В.Н., Классен Н.В., Додонов А.М. и др. // Изв. РАН. Cер. физ. 2004. Т. 68. С. 841.
  18. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Изв. РАН. Cер. физ. 2018. Т. 82. С. 1128; Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. P. 1022.
  19. Лапаев Д.В., Никифоров В.Г., Лобков В.С. и др. // Изв. РАН. Cер. физ. 2021. Т. 85. С. 1727; Lapaev D.V., Nikiforov V.G., Lobkov V.S. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. P. 1377.
  20. Зайцев С.В. // Изв. РАН. Cер. физ. 2022. Т. 86. С. 443; Zaitsev S.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 448.
  21. Пустоваров В.А., Ивановских К.В., Хатченко Ю.Е. и др. // ФТТ. 2019. Т. 61. P. 867; Pustovarov V.A., Ivanovskikh K.V., Khatchenko Yu.E. et al. // Phys. Solid State. 2019. V. 61. P. 758.
  22. Киселев С.А., Пустоваров В.А., Трофимова Е.С. и др. // Опт. и спектроск. 2023. Т. 131. С. 605; Kiselev S.A., Pustovarov V.A., Petrova M.O. et al. // Opt. Spectrosc. 2023. V. 131. P. 568.
  23. Srivastava A.M., Setlur A.A., Comanzo H.A. et al. // Opt. Mater. 2011. V. 33. P. 292.
  24. Шарипов Г.Л., Тухбатуллин А.А., Абдрахманов А.М. // Физикохим. поверхн. Защита матер. 2011. Т. 47. С. 16; Sharipov G.L., Tukhbatullin A.A., Abdrakhmanov A.M. // Prot. Met. Phys. Chem. Surf. 2011. V. 47. P. 13.
  25. Ramteke D.D., Gedam R.S. // J. Rare Earths. 2014. V. 32. P. 389.
  26. Wang X., Chen Y., Kner P.A. et al. // Dalton Trans. 2021. V. 50. P. 3499.
  27. Birks J.B. // Rep. Progr. Phys. 1975. V. 38. P. 903.
  28. Маргулис М.А. // УФН. 2000. Т. 170. С. 263; Margulis M.A. // Phys. Usp. 2000. V. 43. P. 259.
  29. Борисёнок В.А. // Акуст. журн. 2015. Т. 61. С. 333; Borisenok V.A. // Acoust. Phys. 2015. V. 61. P. 308.
  30. Suslick K.S., Eddingsaas N.C., Flannigan D.J. et al. // Acc. Chem. Res. 2018. V. 51. P. 2169.
  31. Pflieger R., Nikitenko S.I., Cairos C. et al. Characterization of cavitation bubbles and sonoluminescence. Springer, 2019. P. 39.
  32. Galunov N., Tarasenko O. // Radiat. Meas. 2010. V. 45. P. 380.
  33. Галунов Н.З., Тарасенко О.А., Тарасов В.А. // Журн. прикл. спектроск. 2013. Т. 80. С. 565; Galunov N.Z., Tarasenko О.А., Tarasov V.A. // J. Appl. Spectrosc. 2013. V. 80. P. 550.
  34. Kukinov A.A., Balashova T.V., Kaverin B.S. et al. // Appl. Phys. Lett. 2020. V. 116. Art. No. 110000.
  35. Yukihara E.G., McKeever S.W.S., Andersen C.E. et al. // Nature Rev. Meth. Primers. 2022. V. 2. P. 26.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025