Non-conservative cascades in MHD turbulence
- Authors: Frick P.G.1, Shestakov A.V.1
-
Affiliations:
- Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
- Issue: Vol 89, No 7 (2025)
- Pages: 1021-1027
- Section: Magnetohydrodynamics
- URL: https://journals.eco-vector.com/0367-6765/article/view/696758
- DOI: https://doi.org/10.31857/S0367676525070038
- ID: 696758
Cite item
Abstract
In fully developed turbulence, according to Kolmogorov's hypothesis, an extended range of scales, called the inertial range, exists, in which neither external nor viscous forces play an appreciable role, and all statistical properties are determined by the dissipation rate of kinetic energy. Turbulent flows, in which the influence of external forces on scales corresponding to the inertial interval is of fundamental importance, are common in nature. Then, the usual integrals of motion, such as the energy of velocity pulsations, hydrodynamic helicity, etc. cease to be so and other quadratic quantities that include scale dependence become integrals of motion. At the same time, from the point of view of the usual integrals of motion, cascade processes become non-conservative. In this work, this idea is developed in frame of shell models of MHD-turbulence. The approach introduced allows us to describe some special regimes of cascade processes in MHD-turbulence.
About the authors
P. G. Frick
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
Email: frick@icmm.ru
Perm, Russia
A. V. Shestakov
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of SciencesPerm, Russia
References
- Колмогоров А.Н. // Докл. АН СССР. 1941. Т. 30. С. 9.
- Biferale L. // Annu Rev. Fluid Mech. 2003. V. 35. P. 441.
- Фрик П.Г. Турбулентность: подходы и модели. Изд. 2-е, испр. и доп. М.: Ижевск: НИЦ «Регулярная и хаотическая динамика», 2010. 332 с.
- Plunian F., Stepanov R., Frick P. // Phys. Reports. 2013. V. 523. No. 1. P. 1.
- Frick P., Shestakov A. // Russ. J. Nonlinear Dynam. 2023. V. 19. No. 3. P. 321.
- Гледзер Е.Б., Должанский Ф.В., Обухов А.М. Системы гидродинамического типа и их применение. М.: Наука, 1981. 368 с.
- Фрик П.Г. // Магн. гидродинам. 1984. № 3. С. 48; Frick P.G. // Magnetohydrodynamics. 1984. V. 20. No. 3. P. 262.
- Biferale L., Lambert A., Lima R., Paladin G. // Phys. D. Nonlinear Phenom. 1995. V. 80. P. 105.
- Frick P., Dubrulle B., Babiano A. // Phys. Rev. E. 1995. V. 51. No. 6. P. 5582.
- Frick P., Sokoloff D. // Phys. Rev. E. 1998. V. 57. No. 4. P. 4155.
- Антонов Т.Ю., Фрик П.Г. // Вестн. ПГТУ. Матем. модел. сист. и проц. 2000. № 8. С. 1.
- Мизева И.А., Степанов Р.А., Фрик П.Г. // ДАН. 2009. Т. 424. № 4. С.479.
- Решетняк М.Ю., Соколов Д.Д., Фрик П.Г. // Изв. РАН. Сер. физ. 2003. Т. 67. № 3. С. 300.
- Обухов А.М., // Изв. АН СССР. Физ. атмосф. и океана. 1971. № 7. С. 695.
- Lorenz E.N. // J. Fluid Mech. 1972. V. 55. P. 545.
- Yamada M., Okhtiani K. // J. Phys. Soc. Japan. 1987. V. 56. P. 4210.
- Гледзер Е.Б. // Докл. АН СССР. 1973. Т. 209. № 5. С. 1046.
- Gloaguen C., Léorat J., Pouquet A., Grappin R. // Phys. D. Nonlinear Phenom. 1985. V. 17. No. 2. P. 164.
- Grappin R., Léorat J., Pouquet A. // J. Physics. (France). 1986. V. 47. P. 1127.
- Carbone V. // Phys. Rev. E. 1994. V. 50. P. 671.
- Biskamp D. // Phys. Rev. E. 1994. V. 50. P. 2702.
- Обухов А.M. // Докл. АН СССР. 1959. Т. 125. С. 1246.
- Bolgiano R. // J. Geophys. Res. 1959. V. 64. P. 2226.
- Stepanov R., Frick P., Shestakov A. // Phys. Rev. Fluids. 2023. V. 8. Art. No. L052601.
- Kraichnan R.H. // Phys. Fluids. 1965. V. 8. P. 1385.
- Ирошников П.С. // Астрон. журн. 1963. № 4. С. 742.
- Müller W.C., Biskamp D. // Phys. Rev. Lett. 2000. V. 84 P. 475.
- Müller W.C., Grappin R. // Phys. Rev. Lett. 2005. V. 95. No. 11. Art. No. 114502.
Supplementary files



