Surface segregation in binary metallic nanoparticles: atomistic and thermodynamic simulations

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of molecular dynamics and atomistic simulations demonstrate segregation of Pd atoms to the surface of binary Pt-Pd nanoparticles and the surface segregation of Cr in Ni-Cr nanoparticles. At the same time, molecular dynamics results predict a transition from the surface segregation of Cr to the surface segregation of Ni at low Cr contents in Ni-Cr nanoparticles.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Samsonov

Tver State University

Хат алмасуға жауапты Автор.
Email: samsonoff@inbox.ru
Ресей, Tver, 170100

A. Romanov

Tver State University

Email: samsonoff@inbox.ru
Ресей, Tver, 170100

I. Talyzin

Tver State University

Email: samsonoff@inbox.ru
Ресей, Tver, 170100

D. Zhigunov

Tver State University

Email: samsonoff@inbox.ru
Ресей, Tver, 170100

V. Puitov

Tver State University

Email: samsonoff@inbox.ru
Ресей, Tver, 170100

Әдебиет тізімі

  1. Сергеев И.Н., Шебзухов А.А. // Изв. РАН. Сер. физ. 2009. Т. 73. № 11. С. 1632; Sergeev I.N., Shebzukhov A.A. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. No. 11. P. 1532.
  2. Watts B.E. // Process. Appl. Ceram. 2009. V. 3. No. 1—2. P. 97.
  3. Ковалев А.И., Вайнштейн Д.Л., Рашковский А.Ю. // Изв. РАН. Сер. физ. 2016. Т. 80. № 10. С. 1402; Kovalev A.I., Wainstein D.L., Rashkovskiy A.Y. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 10. P. 1253.
  4. Ferrando R., Jellinek J., Johnston R.L. // Chem. Rev. 2008. V. 108. P. 845.
  5. Васильев С.А., Дьякова Е.В., Картошкин А.Ю. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1310; Vasilyev S.A., Dyakova E.V., Kartoshkin A.Y. et al. // Bull. Russ. Acad. Sci. Phys. V. 84. No. 9. P. 1116.
  6. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Appl. Nanosci. 2019. V. 9. No. 1. P. 119.
  7. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Comp. Mat. Sci. 2021. V. 199. P. 110710.
  8. Sato K., Matsushima Y., Konno T.J. // AIP Advances. 2017. V. 7. Art. No. 065309.
  9. Bohra M., Alman V., Showry A. et al. // ACS Omega. 2020. V. 5. P. 32883.
  10. Samsonov V.M. Romanov A.A., Talyzin I.V. et al. // Metals. 2023. V. 13. Art. No. 1269.
  11. Thompson A.P. // Comput. Phys. Commun. 2022. V. 271. Art. No. 108171.
  12. Samsonov V.M., Romanov A.A., Kartoshkin A.Yu. et al. // Appl. Phys. 2022. V. 128. No. 9. P. 826.
  13. Zhou X.W., Johnson R.A., Wadley H.N.G. // Phys. Rev. B. 2004. V. 69. No. 14. P. 113.
  14. Lin Z., Johnson R.A., Zhigilei L.V. // Phys. Rev. B. 2008. V. 77. P. 214108.
  15. Kaptay G. // Adv. Colloid Interface Sci. 2020. V. 283. P. 102212.
  16. Kaptay G. // J. Mater. Sci. 2016. V. 51. P. 1738.
  17. Tománek D., Mukherjee S., Kumar V. et al. // Surf. Science. 1982. V. 114. P. 11.
  18. Mendoza-Pérez R., Guisbiers G. // Nanotechnology. 2019. V. 30. P. 305702.
  19. Rousset J.L. // Phys. Rev. B. 1998. V. 58. No. 4. P. 2150.
  20. Fiermans L. // J. Catalys. 2000. V. 193. P. 108.
  21. Bernardi F. // J. Phys. Chem. C. 2009. V. 113. No. 10. P. 3909.
  22. Rodríguez-Proenza C., Palomares-Báez J., ChávezRojo M. // Materials. 2018. V. 11. P. 1882.
  23. Чепкасов И.В., Гафнер Ю.Я., Высотин М.А., Редель Л.В. // ФТТ. 2017. Т. 59. № 10. С. 2050; Chepkasov I.V., Gafner Y.Y., Vysotin M.A., Redel L.V. // Phys. Solid State. 2017. V. 59. No. 10. P. 2076.
  24. Ramirez Caballero G.E., Balbuena P.B. // Mol. Simulat. 2006. V. 32. P. 297.
  25. Самсонов В.М., Талызин И.В., Картошкин А.Ю., Самсонов М.В. // Физ. металл. и металловед. 2019. Т. 120. № 6. С. 630; Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu., Samsonov M.V. // Phys. Metal. Metallogr. 2019. V. 120. No. 6. P. 578.
  26. Samsonov V.M., Talyzin I.V., Puytov V.V. et al. // J. Chem. Phys. 2022. V. 156. No. 21. P. 214302.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependencies for Pt-Pd nanoparticles of different sizes, corresponding to a temperature of T = 300 K. Solid lines show the results of thermodynamic modeling based on the application of the Butler equation: curve 1 corresponds to N = 1480, curve 2 - N = 10,000. The dots represent the results of MD simulations of nanoparticles containing 140 (■), 1480 (●) and 10,000 (▲) atoms. The dashed line corresponds to the limiting case of no surface segregation.

Жүктеу (64KB)
3. Fig. 2. Dependences found for Pt-Pd nanoparticles of radius r0 = 1.0 nm (N = 500) by solving the Butler equation (a) and the Langmuir-MacLean equation (b). Curves 1 and points ● correspond to temperature T = 300 K, lines 2 and points ■ — to temperature T = 1000 K. The lines represent the results of thermodynamic modeling, the points — the MD results.

Жүктеу (115KB)
4. Fig. 3. Dependencies obtained as a result of thermodynamic modeling of Ni-Cr nanoparticles of radius r0 = 1.3 nm (N = 1000): curve 1 is the Butler equation, curve 2 is the Langmuir-McLean equation. Two points correspond to the experimental results [9].

Жүктеу (57KB)
5. Fig. 4. Results of MD simulation for Ni-Cr nanoparticles of radius r0 = 1.3 nm (N = 1000).

Жүктеу (210KB)

© Russian Academy of Sciences, 2024