Micromagnetic states and Bloch points in multilayer nanofilms: influence of anisotropy and magnetic field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We presented a numerical simulation of the processes of magnetization reversal of an exchange-coupled magnetic nanostructure, studies micromagnetic states in the system and their transformation under the influence of an external magnetic field and shows the possibility of realizing magnetic states of the Bloch point type. The influence of magnetic anisotropy constants of the “easy plane” type on the conditions of existence and structure of topological objects is studied.

Sobre autores

V. Filippova

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Email: mukhamadeeva.vika@mail.ru
Ufa, 450075 Russia

Z. Gareeva

Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences

Ufa, 450075 Russia

Bibliografia

  1. Загорский Д.Л., Долуденко И.М., Чигарев С.Г. и др. // Изв. РАН. Сер. физ. 2021. T. 85. № 8. C. 1102; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 848.
  2. Шканакина М.Д., Кичин Г.А., Скирдков П.Т. и др. // Изв. РАН. Сер. физ. 2023. T. 87. № 2. C. 109; Shkanakina M.D., Kichin G.A., Skirdkov P.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 92.
  3. Акимов М.Л., Поляков П.А., Шевцов В.С. // Изв. РАН. Сер. физ. 2020. T. 84. № 5. C. 723; Akimov M.L., Polyakov P.A., Shevtsov V.S. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 596.
  4. Lang M., Beg M., Hovorka O., Fangohr H. // Sci. Reports. 2023. V. 13. Art. No. 6910.
  5. Gobel B., Mertig I., Tretiakov O.A. // Phys. Reports. 2021. V. 895. P. 1.
  6. Feldtkeller E. // Z. Angew. Phys. 1965. V. 19. No. 6. P. 530.
  7. Doring W. // J. Appl. Phys. 1968. V. 39. No. 2. P. 1006.
  8. Harrison C.G., Leaver K.D. // Phys. Stat. Sol. 1973. V. 15. P. 415.
  9. Зубов В.Е., Кринчик Г.С., Кудаков А.Д. // Письма в ЖЭТФ. 1988. T. 47. № 3. C. 134; Zubov V.E., Krinchik G.S., Kudakov A.D. // JETP Lett. 1988. V. 47. No. 1. P. 161.
  10. Кабанов Ю.П., Дедух Л.М., Никитенко В.И. // Письма в ЖЭТФ. 1989. V. 49. № 10. Р. 551; Kabanov Y.P., Dedukh L.M., Nikitenko V.I. // JETP Lett. 1989. V. 49. No. 10. Р. 637.
  11. Andreas C., Kа?kay A., Hertel R. // Phys. Rev. 2014. V. 89. No. 13. Art. No. 134403.
  12. Tiaville A., Garca J.M., Dittrich R. et al. // Phys. Rev. 2003. V. 67. No. 9. Art. No. 094410.
  13. Hertel R., Gliga S., Fahnle M., Schneider C.M. // Phys. Rev. Lett. 2007. V. 98. No. 11. Art. No. 117201.
  14. Wohlhuter P., Bryan M.T., Warnicke P. et al. // Nature Commun. 2015. V. 6. No. 1. Art. No. 7836.
  15. Hertel R., Schneider C.M. // Phys. Rev. Lett. 2006. V. 97. No. 17. Art. No. 177202.
  16. Beg M., Pepper R.A., Cortes-Ortuno D. et al. // Sci. Reports. 2019. V. 9. No. 1. Art. No. 7959.
  17. Lang M., Pathak S.A., Holt S.J.R. et al. // Sci. Reports. 2023. V. 13. No. 1. Art. No. 18934.
  18. Donahue M.J., Porter D.G. // OOMMF User’s Guide. Version 1.0. No. NIST IR 6376. NIST, 1999. 94 р.
  19. Malozemoff A.P., Slonczewski J.C. Magnetic Domain Walls in Bubble Materials: Advances in Materials and Device Research. Academic Press., 2013. 334 р.
  20. Eschenfelder A.H. Magnetic Bubble Technology. Springer Science & Business Media, 2012. 317 р.
  21. Bauer J.J., Rosenberg E.R., Kundu S. et al. // Adv. Electr. Mater. 2020. V. 6. No. 1. Art. No. 1900820.
  22. Gareeva Z.V., Filippova V.V., Shulga N.V., Doroshenko R.A. // Phys. Chem. Chem. Phys. 2024. V. 26. No. 3. Art. No. 22164.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025