Comparative analysis of experimental methods for measuring the magnetoviscous effect
- 作者: Shel’deshova E.V1, Churaev A.A1, Bondar E.V1, Ryapolov P.A1
-
隶属关系:
- Southwest State University
- 期: 卷 89, 编号 7 (2025)
- 页面: 1072-1077
- 栏目: Magnetohydrodynamics
- URL: https://journals.eco-vector.com/0367-6765/article/view/696765
- DOI: https://doi.org/10.31857/S0367676525070109
- ID: 696765
如何引用文章
详细
We presented the study of magnetic fluid viscosity using a capillary viscometer of our own design and the method of oscillating volume of magnetic fluid in a magnetic field. Samples were studied on various carrier liquids: kerosene and polyethylsiloxane, with a volume concentration of the solid phase φ from 19 to 2.5%. The developed installation based on a capillary viscometer allows viscosity measurements in the magnetic field strength range from 20 to 350 kA/m. Measurements based on system oscillations occur in the range from 150 to 900 kA/m. It was experimentally established that the results obtained using these methods are consistent with each other, which allows us to conclude that both methods provide an identical estimate of the viscosity of a magnetic fluid in a magnetic field.
作者简介
E. Shel’deshova
Southwest State University
Email: blackberry__@mail.ru
Kursk, Russia
A. Churaev
Southwest State UniversityKursk, Russia
E. Bondar
Southwest State UniversityKursk, Russia
P. Ryapolov
Southwest State UniversityKursk, Russia
参考
- Schintele G., Palade P., Vekas L., Iacob N. et al. // J. Phys. D. Appl. Phys. 2013. V. 46. No. 39. Art. No. 395501.
- Zhou H., Chen Y., Zhang Y. et al. // Tribol. Trans. 2021. V. 64. No. 1. P. 31.
- Wei F., Mallik A.K., Liu D. et al. // Sci. Reports. 2017. V. 7. No. 1. P. 4725.
- Zhao Y., Wang X.X., Ly R.Q. et al. // IEEE Trans. Instrum. Meas. 2020. V. 70. P. 1.
- Munshi M.M., Patel A.R., Deherl G.M. // Int. J. Math. Eng. Manag. Sci. 2019. V. 4. No. 4. P. 982.
- Jia J., Yang G., Zhang C. et al. // Friction. 2021. V. 9. P. 61.
- Wang J., Zhuang W., Liang W. et al. // Friction. 2022. V. 10. No. 5. P. 645.
- Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343
- Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348
- Ерин С.В., Вивчар В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315
- Viswanath D.S., Ghosh T.K., Prasad D.H. et al. Viscosity of liquids: theory, estimation, experiment, and data. Springer Science & Business Media, 2007. 662 p.
- Woodfield P.L., Seagar A., Hall W. // Int. J. Thermophysics. 2012. V. 33. P. 259.
- Sato Y., Kameda Y., Nagasawa T. et al. // J. Crystal Growth. 2003. V. 249. No. 3–4. P. 404.
- Zhu P., Lai J., Shen J. et al. // Measurement. 2018. V. 122. P. 149.
- Mitschka P. // Rheologica Acta. 1982. V. 21. P. 207.
- Linke J.M., Odenbach S. // J. Phys. Cond. Matter. 2015. V. 27. No. 17. Art. No. 176001.
- Pop L.M., Odenbach S. // J. Phys. Cond. Matter. 2008. V. 20. No. 20. Art. No. 204139.
- Nowak J., Odenbach S. // J. Magn. Magn. Mater. 2016. V. 411. P. 49.
- Nowak J., Borin D., Haefner S. et al. // J. Magn. Magn. Mater. 2017. V. 442. P. 383.
- Шельдешова Е.В., Ряполов П.А., Рекс А.Г. и др. // Изв. ЮЗГУ. Сер. техн. и технол. 2022. Т. 12. № 3. С. 130.
- Shel’deshova E., Churaev A., Ryapolov P. // Fluids. 2023. V. 8. No. 2. P. 47.
- Полунин В.М. Акустические свойства нанодисперсных магнитных жидкостей. М.: Физматлит, 2012. 384 с.
- Polunin V.M. Acoustics of nanodispersed magnetic fluids. CRC Press, 2015.
- Polunin V.M., Storozhenko A.M., Ryapolov P.A. Mechanics of liquid nano-and microdispersed magnetic media. CRC Press, 2017.
补充文件


