Influence of the Gd Concentration on Superconducting Properties in Second-Generation High-Temperature Superconducting Wires

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Systematic studies of second-generation high-temperature superconducting wires with Gd excess relative to the stoichiometric GdBa2Cu3O7 composition are reported. It has been revealed that filamentary defects in the form of non-superconducting Gd2CuO4 phase located along the ab plane are formed during film growth. These inclusions lead to a change in the pinning mechanism of the vortex structure, due to which the peak of the critical current at +15% Gd is clearly observed.

About the authors

P. N. Degtyarenko

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
125412, Moscow, Russia

A. V. Sadakov

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

A. V. Ovcharov

National Research Center Kurchatov Institute

Email: degtyarenkopn@gmail.com
123182, Moscow, Russia

A. Yu. Degtyarenko

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

S. Yu. Gavrilkin

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

O. A. Sobolevskiy

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

A. Yu. Tsvetkov

Lebedev Physical Institute, Russian Academy of Sciences

Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

B. I. Massalimov

Lebedev Physical Institute, Russian Academy of Sciences

Author for correspondence.
Email: degtyarenkopn@gmail.com
119991, Moscow, Russia

References

  1. D. Uglietti, Supercond. Sci. Technol. 33, 053001 (2019).
  2. Y. H. Zhou, D. Park, and Y. Iwasa, Nat. Sci. Rev. 10, 3 (2023).
  3. M. T. Naus, R. W. Heussner, A. A. Squitieri, and D. C. Larbalestier, IEEE Trans. Appl. Supercond. 7, 1122 (1997).
  4. A. Godeke, M. C. Jewell, C. M. Fischer, A. A. Squitieri, P. J. Lee, and D. C. Larbalestier, J. Appl. Phys. 97, 9 (2005).
  5. L. Rossi, IEEE Trans. Appl. Supercond. 17, 1005 (2007).
  6. K. I. Sasaki, T. Nakamoto, N. Kimura, T. Tomaru, T. Ogitsu, N. Higashi, and T. Ichihara, IEEE Trans. Appl. Supercond. 17, 1083 (2007).
  7. B. Turck, IEEE Trans. Magn. 32, 2264 (1996).
  8. N. Mitchell, D. Bessette, R. Gallix, C. Jong, J. Knaster, P. Libeyre, C. Sborchia, and F. Simon, IEEE Trans. Appl. Supercond. 18, 435 (2008).
  9. S. Zhang, S. Xu, Z. Fan, P. Jiang, Z. Han, G. Yang, and Y. Chen, Supercond. Sci. Technol. 31, 125006 (2018).
  10. G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
  11. L. Bottura, S. Prestemon, L. Rossi, and A. V. Zlobin, Front. Phys. 10, 935196 (2022).
  12. E. Ban, Y. Matsuoka, T. Yoshimura, and K. Takahashi, Thin Solid Films. 338, 118 (1999).
  13. M. Inoue, S. Nishimura, T. Kuga, M. Kiuchi, T. Kiss, M. Takeo, T. Matsushita, Y. Iijima, K. Kakimoto, T. Saitoh, S. Awaji, K. Watanabe, and Y. Shiohara, Phys. C. Supercond. 372, 794 (2002).
  14. M. Iwakuma, K. Toyota, M. Nigo, T. Kiss, K. Funaki, Y. Iijima, T. Saitoh, Y. Yamada, and Y. Shiohara, Phys. C. Supercond. 412, 983 (2004).
  15. V. Chepikov, N. Mineev, P. Degtyarenko, S. Lee, V. Petrykin, A. Ovcharov, A. Vasiliev, A. Kaul, V. Amelichev, A. Kamenev, A. Molodyk, and S. Samoilenkov, Supercond. Sci. Technol. 30, 124001 (2017).
  16. S. M. Choi, G. M. Shin, and S. I. Yoo, Phys. C. Supercond. 485, 154 (2013).
  17. K. Nakashima, N. Chikumoto, A. Ibi, S. Miyata, Y. Yamada, T. Kubo, A. Suzuki, and T. Terai, Phys. C. Supercond. 463, 665 (2007).
  18. E. Mezzetti, B. Minetti, D. Andreone, R. Cherubini, L. Gherardi, and P. Metra, J. Supercond. 5, 185 (1992).
  19. D. Huang, H. Gu, H. Shang, T. Li, B. Xie, Q. Zou, D. Chen, W. Chu, and F. Ding, Supercond. Sci. Technol. 34, 045001 (2021).
  20. T. Matsunami, Y. Ichino, Y. Yoshida, A. Ichinose, and K. Matsumoto. Phys. Proc. 27, 236 (2012).
  21. M. Miura, M. Yoshizumi, Y. Sutoh, K. Nakaoka, S. Miyata, Y. Yamada, T. Izumi, Y. Shiohara, T. Goto, A. Yoshinaka, and A. Yajima, Phys. C: Supercond. 468, 15-20, 1643 (2008).
  22. A. A. Abrikosov, Sov. Phys. JETP. 5, 1174 (1957).
  23. J. G. Lin, C. Y. Huang, Y. Y. Xue, C. W. Chu, X. W. Cao, and J. C. Ho, Phys. Rev. B 51, 12900 (1995).
  24. A. Molodyk, S. Samoilenkov, A. Markelov et al. (Collaboration), Sci. Rep. 11, 2084 (2021).
  25. A. V. Ovcharov, P. N. Degtyarenko, V. N. Chepikov, A. L. Vasiliev, S. Yu. Gavrilkin, I. A. Karateev, A. Yu. Tsvetkov, and A. R. Kaul, Sci. Rep. 9, 15235 (2019).
  26. O. Y. Gorbenko, S. V. Samoilenkov, I. E. Graboy, and A. R. Kaul, Chem. Mater. 14, 4026 (2002).
  27. E. Helfand, and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
  28. V. L. Ginzburg and L. D. Landau, ZhETF 20, 1064 (1950).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук