Quasicrystalline Structures with Narrow-Band Frequency–Angular Selectivity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Design methods in the reciprocal space allow one to obtain structures with desired properties. Quasicrystalline photonic structures, which ensure the selective scattering of an electromagnetic wave incident on the sample, have been designed. The maxima of the Fourier transform of the desired distribution of the permittivity in the reciprocal space are located along two arcs on the Ewald sphere, which corresponds to the scattering of the wave with the required wavelength and angle of incidence. The material distribution has been determined by the transition to the real space. A structure with a low dielectric contrast has been formed after the binarization of the refractive index. The theoretical analysis of the properties of the structure has confirmed the frequency–angular selectivity of scattering. The numerical calculations show the possibility of achieving the effective scattering and absorption of the electromagnetic energy up to 94% in a narrow frequency range and in a narrow interval of angles of incidence at a dielectric contrast of two materials of 1.07.

About the authors

V. A Chistyakov

Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia

Email: v.chistyakov@metalab.ifmo.ru

M. S Sidorenko

Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia

Email: v.chistyakov@metalab.ifmo.ru

A. D Sayanskiy

Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia

Email: v.chistyakov@metalab.ifmo.ru

M. V Rybin

Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia; Ioffe Institute, 194021, St. Petersburg, Russia

Author for correspondence.
Email: v.chistyakov@metalab.ifmo.ru

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Princet. Univ. Press. Princeton, NJ [ua] (2008).
  4. M. V. Rybin and M. F. Limonov, Phys.-Uspekhi 62, 823 (2019).
  5. P. Tonkaev and Y. Kivshar, JETP Lett. 112, 615 (2020).
  6. A. M. Chernyak, M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A. A. Fedyanin, JETP Lett. 111, 46 (2020).
  7. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vuckovi'c, and A. W. Rodriguez, Nat. Photonics 12, 659 (2018).
  8. M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, Laser Photonics Rev. 14, 1900445 (2020).
  9. K. R. Safronov, V. O. Bessonov, and A. A. Fedyanin, JETP Lett. 114, 321 (2021).
  10. P. R. Wiecha, A. Arbouet, C. Girard, and O. L. Muskens, Photonics Nanostructures: Fundam. Appl. 9, B182 (2021).
  11. P. R. Wiecha, A. Y. Petrov, P. Genevet, and A. Bogdanov, Photonics Nanostructures: Fundam. Appl. 52, 101084 (2022).
  12. P. M. Piechulla, B. Fuhrmann, E. Slivina, C. Rockstuhl, R. B. Wehrspohn, and A. N. Sprafke, Adv. Opt. Mater. 9, 2170068 (2021).
  13. W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, Opt. Express 21, 19972 (2013).
  14. A. D. Sinelnik, I. I. Shishkin, X. Yu, K. B. Samusev, P. A. Belov, M. F. Limonov, P. Ginzburg, and M. V. Rybin, Adv. Opt. Mater. 8, 2001170 (2020).
  15. P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov, L. Torner, V. V. Konotop, and F. Ye, Nature 577, 42 (2020).
  16. N. Lassaline, R. Brechbu�hler, S. J. Vonk, K. Ridderbeek, M. Spieser, S. Bisig, B. Le Feber, F. T. Rabouw, and D. J. Norris, Nature 582, 506 (2020).
  17. L. Maiwald, T. Sommer, M. S. Sidorenko, R. R. Yafyasov, M. E. Mustafa, M. Schulz, M. V. Rybin, M. Eich, and A. Y. Petrov, Adv. Opt. Mater. 10, 2100785 (2022).
  18. V. A. Chistyakov, M. S. Sidorenko, A. D. Sayanskiy, and M. V. Rybin, Phys. Rev. B 107, 014205 (2023).
  19. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
  20. K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, Energy Environ. Sci. 7, 2725 (2014).
  21. T. M. Mercier, T. Rahman, C. Krishnan, E. Khorani, P. J. Shaw, M. E. Pollard, S. A. Boden, P. G. Lagoudakis, and M. D. Charlton, Nano Energy 84, 105874 (2021).
  22. C. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, Light Sci. Appl. 3, e161 (2014).
  23. R. Saive, Progress in Photovoltaics: Research and Applications 29, 1125 (2021).
  24. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
  25. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  26. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, Science 332, 1541 (2011).
  27. A. Petrov (private communications in December of 2021).
  28. L. Maiwald, S. Lang, D. Jalas, H. Renner, A. Y. Petrov, and M. Eich, Opt. Express 26, 11352 (2018).
  29. Y. Kim, M. M. Tentzeris, and S. Lim, Materials 12, 402 (2019).
  30. G. Boussatour, P.-Y. Cresson, B. Genestie, N. Joly, and T. Lasri, IEEE Microw. Wirel. Compon. Lett. 28, 374 (2018).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук