Bonding Duality and Optoelectronic Properties of Bilayer Carbon Structures Based on the T12 Phase and Penta-Graphene

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Bilayer compounds of two-dimensional T12 phase carbon allotrope and penta-graphene have been studied using the electron density functional theory. The stability of the considered two-dimensional structures with different types of stacking order at different temperatures has been estimated from the calculated phonon spectra and molecular dynamics simulation. The stability of the two-dimensional planar structure up to 1350 K has been demonstrated. It has been shown that bilayer penta-graphene compounds with the AA' and AB' stacking orders have energy minima both in the state with the van der Waals interaction and in the form of covalently bonded layers in the AA-T12 and T12 phases. The barrier for the transition between covalently and van der Waals bonded AA' and AB' stacking orders has been analyzed. The calculated electronic and optical characteristics show that the band gap in the case of covalent bonding is much narrower than that in the case of van der Waals bonding.

作者简介

A. Toksumakov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: adilet.toksumakov@phystech.edu
119334, Moscow, Russia

V. Baydyshev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: adilet.toksumakov@phystech.edu
119334, Moscow, Russia

D. Kvashnin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: adilet.toksumakov@phystech.edu
119334, Moscow, Russia

Z. Popov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: adilet.toksumakov@phystech.edu
119334, Moscow, Russia

参考

  1. E.H. Falcao and F.Wudl, J. Chem. Technol. Biotechnol. 82, 524 (2007).
  2. R. Hoffmann, A.A. Kabanov, A.A. Golov, and D.M. Proserpio, Angewandte Chemie International Edition 55, 10962 (2016).
  3. B.Y. Valeev, A.N. Toksumakov, D.G. Kvashnin, and L.A. Chernozatonskii, JETP Lett. 115, 10 (2022).
  4. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, PNAS 112, 2372 (2015).
  5. L.A. Chernozatonskii, P.B. Sorokin, A.G. Kvashnin, and D.G. Kvashnin, JETP Lett. 90, 134 (2009).
  6. K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
  7. Z. Zhao, F. Tian, X. Dong, Q. Li, Q. Wang, H. Wang, X. Zhong, B. Xu, D. Yu, J. He, H.-T. Wang, Y. Ma, and Y. Tian, J. Am. Chem. Soc. 134, 12362 (2012).
  8. H. Einollahzadeh, R. S. Dariani, and S.M. Fazeli, Solid State Commun. 229, 1 (2016).
  9. Z.G. Yu and Y.-W. Zhang, J. Appl. Phys. 118, 165706 (2015).
  10. W. Xu, G. Zhang, and B. Li, J. Chem. Phys. 143, 154703 (2015).
  11. А.И. Подливаев, К.С. Гришаков, К.П. Катин, М.М. Маслов, Письма в ЖЭТФ 113, 182 (2021).
  12. A. I. Podlivaev, JETP Lett. 111, 613 (2020).
  13. Л.А. Опенов, А.И. Подливаев, Письма в ЖЭТФ 107, 747 (2018).
  14. A. I. Podlivaev, Письма в ЖЭТФ 115, 384 (2022).
  15. J.Wang, Z.Wang, R. J. Zhang, Y.X. Zheng, L.Y. Chen, S.Y. Wang, C.-C. Tsoo, H.-J. Huang, and W.-S. Su, Phys. Chem. Chem. Phys. 20, 18110 (2018).
  16. M.-Q. Cheng, Q. Chen, K. Yang, W.-Q. Huang, W.-Y. Hu, and G.-F. Huang, Nanoscale Res. Lett. 14, 306 (2019).
  17. M.A. Nazir, A. Hassan, Y. Shen, and Q. Wang, Nano Today 44, 101501 (2022).
  18. Z. Sun, K. Yuan, X. Zhang, G. Qin, X. Gong, and D. Tang, Phys. Chem. Chem. Phys. 21, 15647 (2019).
  19. F.Q. Wang, J. Liu, X. Lie, Q. Wang, and Y. Kawazoe, Appl. Phys. Lett. 111, 192102 (2017).
  20. K.A. Tikhomirova, C. Tantardini, E.V. Sukhanova, Z. I. Popov, S.A. Evlashin, M.A. Tarkhov, V. L. Zhdanov, A.A. Dudin, A.R. Oganov, D.G. Kvashnin, and A.G. Kvashnin, J. Phys. Chem. Lett. 11, 3821 (2020).
  21. S.W. Cranford, Carbon 96, 421 (2016).
  22. O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, FlatChem 1, 65 (2017).
  23. A.V. Kuklin, H. Agren, and P.V. Avramov, Phys. Chem. Chem. Phys. 22, 8289 (2020).
  24. C. P. Ewels, X. Rocquefelte, H.W. Kroto, M. J. Rayson, P.R. Briddon, and M. I. Heggie, PNAS 112, 15609 (2015).
  25. P.V. Avramov, V.A. Demin, M. Luo, C.H. Choi, P.B. Sorokin, B. I. Yakobson, and L.A. Chernozatonskii, J. Phys. Chem. Lett. 6, 4525 (2015).
  26. Y. Zhu, S. Zhang, J. Xu, L. Fan, X. Yu, Y. Wei, C. Hu, and Y. Hang, Diam. Relat. Mater. 122, 108829 (2022).
  27. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  28. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
  29. G. Kresse and J. Furthm¨uller, Phys. Rev. B 54, 11169 (1996).
  30. G. Kresse and J. Furthm¨uller, Comput. Mater. Sci. 6, 15 (1996).
  31. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
  32. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
  33. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  34. H. J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).
  35. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
  36. C. Kittel, Introduction to solid state physics, John Wiley, N.Y. (1966).
  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
  38. A.C.T. van Duin, S. Dasgupta, F. Lorant, and W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001).
  39. X. Li, H. Mizuseki, S. J. Pai, and K.-R. Lee, Comput. Mater. Sci. 169, 109143 (2019).
  40. M. Feng, X. Z. Jiang, Q. Mao, K.H. Luo, and P. Hellier, Fuel 254, 115643 (2019).
  41. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Nat. Nanotechnol. 13, 246 (2018).
  42. G.A. Segal, J. Am. Chem. Soc. 96, 7892 (1974).
  43. L.A. Chernozatonskii, V.A. Demin, A.G. Kvashnin, and D.G. Kvashnin, Applied Surface Science 572, 151362 (2022).
  44. S. Huabing, J. Mater. Chem. 9, 4505 (2021).
  45. A.G. Kvashnin, L.A. Chernozatonskii, B. I. Yakobson, and P.B. Sorokin, Nano Lett. 14, 676 (2014).
  46. P.V. Avramov and A.V. Kuklin, New J. Phys. 24, 103015 (2022).
  47. Y. Ding and Y. Wang, J. Phys. Chem. C 117, 18266 (2013).
  48. L.A. Chernozatonskii, P.B. Sorokin, A.A. Kuzubov, B.P. Sorokin, A.G. Kvashnin, D.G. Kvashnin, P.V. Avramov, and B. I. Yakobson, J. Phys. Chem. C 115, 132 (2011).
  49. X. Wei, B. Fragneaud, C.A. Marianetti, and J.W. Kysar, Phys. Rev. B 80, 205407 (2009).
  50. S. Wang, J. Li, X. Zhu, and M. Wang, Carbon 143, 517 (2019).
  51. J. Shang, L. Pan, X.Wang, J. Li, and Z.Wei, Semicond. Sci. Technol. 33, 034002 (2018).
  52. P.B. Sorokin and B. I. Yakobson, Nano Lett. 21, 5475 (2021).
  53. R.G. Berdiyorov and M. E. Madjet, RSC Adv. 6, 50867 (2016).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023