Density Functional Theory, Molecular Dynamics, and AlteQ Studies of Baimantuoluoamide A and Baimantuoluoamide B to Identify Potential Inhibitors of Mpro Proteins: a Novel Target for the Treatment of SARS COVID-19

封面
  • 作者: Gurushankar K.1,2, Jeyaseelan S.C.3,4, Grishina M.1, Sisvanto I.5, Tiwari R.6, Puspaningsih N.N.7
  • 隶属关系:
    1. Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080, Chelyabinsk, Russia
    2. Department of Physics, Kalasalingam Academy of Research and Education, 626126, Krishnankoil, Tamilnadu, India
    3. Post Graduate & Research Department of Physics, N.M.S.S.V.N. College, 625019, Madurai, Tamilnadu, India
    4. Post Graduate Department of Physics, Mannar Thirumalai Naciker College, 625004, Madurai, Tamilnadu, India
    5. Bioinformatic Laboratory, UCoE Research Center for Bio-Molecule Engineering Universitas Airlangga, 60115, Surabaya, Indonesia
    6. Department of Physics, Coordinator Research and Development Cell, Dr CV Raman University, 495113, Kargi Kota, Bilaspur, CG, India
    7. Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, 60115, Surabaya, Indonesia
  • 期: 卷 117, 编号 9-10 (5) (2023)
  • 页面: 783-793
  • 栏目: Articles
  • URL: https://journals.eco-vector.com/0370-274X/article/view/662563
  • DOI: https://doi.org/10.31857/S1234567823100117
  • EDN: https://elibrary.ru/COEQLL
  • ID: 662563

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

COVID-19 has resulted in epidemic conditions over the world. Despite efforts by scientists from all over the world to develop an effective vaccine against this virus, there is presently no recognized cure for COVID-19. The most succeed treatments for various ailments come from natural components found in medicinal plants, which are also crucial for the development of new medications. This study intends to understand the role of the baimantuoluoamide A and baimantuoluoamide B molecules in the treatment of Covid19. Initially, density functional theory (DFT) used to explore their electronic potentials along with the Becke3–Lee–Yang–Parr (B3LYP) 6-311 + 
 basis set. A number of characteristics, including the energy gap, hardness, local softness, electronegativity, and electrophilicity, have also been calculated to discuss the reactivity of molecules. Using natural bond orbital, the title compound’s bioactive nature and stability were investigated. Further, both compounds potential inhibitors with main protease (Mpro) proteins, molecular dynamics simulations and AlteQ investigations also studied.

作者简介

K. Gurushankar

Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080, Chelyabinsk, Russia; Department of Physics, Kalasalingam Academy of Research and Education, 626126, Krishnankoil, Tamilnadu, India

Email: gurushankar01051987@gmail.com

S. Jeyaseelan

Post Graduate & Research Department of Physics, N.M.S.S.V.N. College, 625019, Madurai, Tamilnadu, India; Post Graduate Department of Physics, Mannar Thirumalai Naciker College, 625004, Madurai, Tamilnadu, India

Email: gurushankar01051987@gmail.com

M. Grishina

Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080, Chelyabinsk, Russia

Email: gurushankar01051987@gmail.com

I. Sisvanto

Bioinformatic Laboratory, UCoE Research Center for Bio-Molecule Engineering Universitas Airlangga, 60115, Surabaya, Indonesia

Email: gurushankar01051987@gmail.com

R. Tiwari

Department of Physics, Coordinator Research and Development Cell, Dr CV Raman University, 495113, Kargi Kota, Bilaspur, CG, India

Email: gurushankar01051987@gmail.com

N. Puspaningsih

Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, 60115, Surabaya, Indonesia

编辑信件的主要联系方式.
Email: gurushankar01051987@gmail.com

参考

  1. S. Boopathi, A.B. Poma, and P. Kolandaivel, J. Biomol. Struct. Dyn. 39, 3409 (2021).
  2. K. Dhama, K. Sharun, R. Tiwari, M. Dadar, Y. S. Malik, K.P. Singh, and W. Chaicumpa, Hum. Vaccin. Immunother. 16, 1232 (2020).
  3. M. Cascella, M. Rajnik, A. Aleem, S.C. Dulebohn, and R.D. Napoli, 2022 Oct. 13. in: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2022).
  4. S. Beyersted, E.B. Casaro, and E. B. Range, Eur. J. Clin. Microbiol. Infect. Dis. 40, 905 (2021).
  5. R. Razali, H. Asis, and C. Budiman, Microorganisms 9, 2481 (2021).
  6. S.G. Katre, A. J. Asnani, K. Pratyush, N.G. Sakharkar, A.G. Bhope, K.T. Sawarkar, and V. S. Nimbekar, Futur. J. Pharm. Sci. 8, 36 (2022).
  7. C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L. J. Carter, J. Smoot, A.C. Gregg, A.D. Daniels, S. Jervey, and D. Albaiu, ACS Cent. Sci. 25, 315 (2020).
  8. Z. Xu, C. Peng, Y. Shi, Z. Zhu, K. Mu, and X. Wang, https://doi.org/10.1101/2020.01.27.921627 (2020).
  9. N. Bohr, Dialectica 2, 312 (1948).
  10. H. Rimac, M.A. Grishina, and V.A. Potemkin, Future Med. Chem. 12, 1387 (2020).
  11. S. Kandagalla, H. Rimac, V.A. Potemkin, and M.A. Grishina, Future Med. Chem. 13, 863 (2021).
  12. H. Rimac, M. Grishina, and V. Potemkin, J. Chem. Inf. Model 61, 1801 (2021).
  13. N. Palko, M. Grishina, and V. Potemkin, Molecules 26, 3960 (2021).
  14. M. Akram, I.M. Tahir, S.M.A. Shah, Z. Mahmood, A. Altaf, K. Ahmad, N. Munir, M. Daniyal, S. Nasir, and H. Mehboob, Phytother. Res. 32, 811 (2018).
  15. Y. Zhao, Y. Wu, and M. Wang, in: Handbook of Food Chemistry, ed. by P. Cheung and B. Mehta, Springer, Berlin, Heidelberg (2015).
  16. V. Kumar, V. Bhatt, and N. Kumar, Studies in Natural Products Chemistry 56, 287 (2018).
  17. Y. Xiao, Y. Yan, L. Chang, H. Ji, H. Sun, S. Song, K. Feng, A. Nuermaimaiti, Z. Lu, and L. Wang, Antiviral Res. 212, 105558 (2023).
  18. K. Gurushankar, H. Rimac, V. Potemkin, and M. Grishina, J. Mol. Struct. 1230, 129925 (2021).
  19. B.R. Beck, B. Shin, Y. Choi, S. Park, and K. Kang, Comput. Struct. Biotechnol. J. 18, 784 (2020).
  20. A.A. Elfiky, Life Sci. 253, 117592e (2020).
  21. A. Belhassan, S. Chtita, H. Zaki, T. Lakhlifi, and M. Bouachrine, Bioinformation 16, 404 (2020).
  22. N. Muralidharan, R. Sakthivel, D. Velmurugan, and M.M. Gromiha, J. Biomol. Struct. Dyn. 39, 2673 (2021).
  23. S. Vardhan and S.K. Sahoo, Comput. Biol. Med. 124, 103936 (2020).
  24. P. Calligari, S. Bobone, G. Ricci, and A. Bocedi, Viruses 12, 445 (2020).
  25. L. S. Braga, D.H. Leal, K. Kuca, and T.C. Ramalho, Curr. Org. Chem. 24, 314 (2020).
  26. R. Sahu, R.K. Mohapatra, S. I. Al-Resayes, D. Das, P.K. Parhi, S. Rahman, L. Pintilie, M. Kumar, M. Azam, and A. Ansari, J. Saudi Chem. Soc. 25, 101193 (2021).
  27. F. Pereira, K. Xiao, D.A. Latino, C. Wu, Q. Zhang, and J. Aires-de-Sousa, J. Chem. Inf. Model 57, 11 (2017).
  28. A. Karuppasamy, K.G. Krishnan, M.P. Velayutham Pillai, and C. Ramalingan, J. Mol. Struct. 1128, 674 (2017).
  29. N. Rasool, F. Yasmin, S. Sahai, W. Hussain, H. Inam, and A. Arshad, Chem. Phys. Lett. 771, 138463 (2021).
  30. M.G. Khrenova, V.G. Tsirelson, and A.V. Nemukhin, Phys. Chem. Chem. Phys. 22, 19069 (2020).
  31. K. Arafet, N. Serrano-Aparicio, A. Lodola, A. J. Mulholland, F.V. Gonz'alez, K. 'Swiderek, and V. Moliner, Chem. Sci. 12, 1433 (2021).
  32. C.M. Coleman, J.M. Sisk, R.M. Mingo, E.A. Nelson, J.M. White, and M. B. Frieman, J. Virol. 90, 8924 (2016).
  33. R. Dennington, T. Keith, and J. Milam, Shawnee Mission KS, 2009. Version 5.
  34. N.M. O'Boyle, A. L. Tenderholt, and K.M. Langner, J. Compt. Chem. 29, 839 (2008).
  35. K. Gholivand, F. Mohammadpanah, M. Pooyan, and R. Roohzadeh, Journal of Molecular Structure 1248, 131481 (2022).
  36. H. S. Sumrra, A.U. Hassan, M. Imran, M. Khalid, E.U. Mughal, M.N. Zafar, M.N. Tahir, M.A. Raza, and A.A.C. Braga, Appl. Organomet. Chem. 34, e5623 (2020).
  37. A. Ali, M. Khalid, S. Abid, J. Iqbal, M.N. Tahir, A.R. Raza, J. Zukerman-Schpector, and M.W. Paixao, Appl. Organomet Chem. 34, e5399 (2020).
  38. Y. S. Mary, G. Yalcin, Y. S. Mary, K. S. Resmi, R. Thomas, T. �Onkol, E.N. Kasap, and I. Yildiz, Chemical Papers 74, 1957 (2020).
  39. S. Christopher Jeyaseelan and A. Milton Franklin Benial, J. Mol. Recognit. 34, e2872 (2021).
  40. M. Pradeep Kumar, K. Kranthi Raj, D. Ramachandran, M.N. S. Pavan Kumar, Radha Vaddavalli, and P. Jhansi Lakshmi, J. Proteomics Bioinform. 3, 305 (2010).
  41. A. Kumari, V. S. Rajput, P. Nagpal, H. Kukrety, S. Grover, and A. Grover, J. Biomol. Struct. Dyn. 40, 4987 (2022).
  42. B. Nutho, S. Pengthaisong, A. Tankrathok, V. S. Lee, J.R.K. Cairns, T. Rungrotmongkol, and S. Hannongbua, Biomolecules 10, 1 (2020).
  43. A. Bornot, C. Etchebest, and A.G. De Brevern, Proteins Struct. Funct. Bioinforma. 79, 839 (2011).
  44. T. Joshi, T. Joshi, P. Sharma, S. Chandra, and V. Pande, J. Biomol. Struct. Dyn. 39, 823 (2021).
  45. B. Nutho, P. Mahalapbutr, K. Hengphasatporn, N.C. Pattaranggoon, N. Simanon, Y. Shigeta, S. Hannongbua, and T. Rungrotmongkol, Biochemistry 59, 1769 (2020).
  46. R. Suno, S. Lee, S. Maeda, S. Yasuda, K. Yamashita, K. Hirata, S. Horita, M. S. Tawaramoto, H. Tsujimoto, T. Murata, M. Kinoshita, M. Yamamoto, B.K. Kobilka, N. Vaidehi, S. Iwata, and T. Kobayashi, Nat. Chem. Biol. 14, 1150 (2018).
  47. P. Mahalapbutr, N. Darai, W. Panman, A. Opasmahakul, N. Kungwan, S. Hannongbua, and T. Rungrotmongkol, Sci. Rep. 9, 1 (2019).
  48. B.R. Miller, T.D. McGee, J.M. Swails, N. Homeyer, H. Gohlke, and A.E. Roitberg, J. Chem. Theory Comput. 8, 3314 (2012).
  49. C. Wang, D. Greene, L. Xiao, R. Qi, and R. Luo, Front. Mol. Biosci. 4, 1 (2018).
  50. U. Ryde and P. Soderhjelm, Chem. Rev. 116, 5520 (2016).
  51. V.A. Potemkin and M.A. Grishina, J. Comput. Aided Mol. Des. 22, 489 (2008).
  52. M. Grishina, O. Bolshakov, A. Potemkin, and V. Potemkin, Comput. Theor. Chem. 1091, 122 (2016).
  53. R. F.W. Bader, Chem. Rev. 91, 893 (1991).
  54. V. Naumovich, M. Grishina, J. Novak, P. Pathak, V. Potemkin, M. Shahbaaz, and M.H. Abdellattif, J. Biomol. Struct. Dyn. 40, 4775 (2022).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023