Effective Hamiltonian of Topologically Protected Qubit in a Helical Crystal
- Authors: Niyazov R.A.1,2, Aristov D.N.1,3, Kachorovskiy V.Y.2
-
Affiliations:
- Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute
- Ioffe Institute
- Faculty of Physics, St. Petersburg State University
- Issue: Vol 118, No 5-6 (9) (2023)
- Pages: 376-383
- Section: Articles
- URL: https://journals.eco-vector.com/0370-274X/article/view/663081
- DOI: https://doi.org/10.31857/S1234567823170123
- EDN: https://elibrary.ru/KBPDDK
- ID: 663081
Cite item
Abstract
We study a superlattice formed by tunnel-coupled identical antidots periodically situated in a two-dimensional topological insulator placed in a magnetic field. The superlattice spectrum can be controlled by gate electrodes or by changing the magnetic flux through the antidots. We demonstrate that a topologically protected qubit appears at the boundary between two regions with different fluxes. The qubit properties depend on the value of the flux jump on the boundary and can be controlled by the gate voltage. We derive the effective Hamiltonian of such a qubit and analyze the dependence of its properties on the main parameters of the superlattice: the tunnel coupling between antidots, and the probability of jumps with the spin flip.
About the authors
R. A. Niyazov
Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;Ioffe Institute
Email: r.niyazov@mail.ioffe.ru
188300, Gatchina, Russia;194021, St. Petersburg, Russia
D. N. Aristov
Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute;Faculty of Physics, St. Petersburg State University
Email: r.niyazov@mail.ioffe.ru
188300, Gatchina, Russia;199034, St. Petersburg, Russia
V. Yu. Kachorovskiy
Ioffe Institute
Author for correspondence.
Email: r.niyazov@mail.ioffe.ru
194021, St. Petersburg, Russia
References
- B. Bernevig and T. Hughes, Topological Insulators and Topological Superconductors, Princeton University Press, Princeton (2013).
- M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
- X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
- C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
- B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
- M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.- C. Zhang, Science 318, 766 (2007).
- A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).
- G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal, Phys. Rev. B 84, 121302 (2011).
- C. Brune, A. Roth, H. Buhmann, E. M. Hankiewicz, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.- C. Zhang, Nat. Phys. 8, 485 (2012).
- A. Kononov, S. V. Egorov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and E. V. Deviatov, JETP Lett. 101, 814 (2015).
- H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen, and Y. Cui, Nat. Mater. 9, 225 (2010).
- B. C. Lin, S. Wang, L. X. Wang, C. Z. Li, J. G. Li, D. Yu, and Z. M. Liao, Phys. Rev. B 95, 235436 (2017).
- J. H. Bardarson, P. W. Brouwer, and J. E. Moore, Phys. Rev. Lett. 105, 156803 (2010).
- J. H. Bardarson and J. E. Moore, Rep. Prog. Phys. 76, 56501 (2013).
- G. Gusev, Z. Kvon, O. Shegai, N. Mikhailov, and S. Dvoretsky, Solid State Commun. 205, 4 (2015).
- P. Delplace, J. Li, and M. Buttiker, Phys. Rev. Lett. 109, 246803 (2012).
- F. Dolcini, Phys. Rev. B 83, 165304 (2011).
- R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, Phys. Rev. B 98, 045418 (2018).
- R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, npj Computational Materials 6, 174 (2020).
- R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, Phys. Rev. B 103, 125428 (2021).
- R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, JETP Lett. 113, 689 (2021).
- H. Maier, J. Ziegler, R. Fischer, D. Kozlov, Z. D. Kvon, N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Nat.Commun. 8, 2023 (2017).
- J. Ziegler, Quantum transport in HgTe topological insulator nanostructures, Ph. D. thesis, University of Regensburg, Regensburg (2019).
- R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii, (2023), Phys. Rev. B 108, 075424 (2023).
- B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).
- J. C. Y. Teo and C. L. Kane, Phys. Rev. B 79, 235321 (2009).
- D. N. Aristov and R. A. Niyazov, Phys. Rev. B 94, 035429 (2016).
- D. N. Aristov, I. V. Gornyi, D. G. Polyakov, and P. Wolfle, Phys. Rev. B 95, 155447 (2017).
- J. Wang, Y. Meir, and Y. Gefen, Phys. Rev. Lett. 118, 046801 (2017).
- S. V. Maleyev, A. G. Yashenkin, and D. N. Aristov, Phys. Rev. B 50, 13825 (1994).
- V. I. Perel and D. G. Polyakov, JETP 59, 204 (1984).
- A. P. Dmitriev, JETP 68, 132 (1989).
Supplementary files
