Optimization of Adiabatic Superconducting Logic Cells by Using π Josephson Junctions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Adiabatic superconducting logic circuits can ensure the practical implementation of operations with the energy dissipation below the Landauer limit. However, applications of the existing solutions are limited because of two contradictory requirements of a high energy efficiency and a sufficiently fast response of devices. Josephson junctions with a negative critical current (π junctions) allow one to obtain a certain form of the potential energy of superconducting circuits and, as a result, a practically required degree of control of dynamic processes in the proposed reversible logic cells. The features of the current transport and balance of Josephson phases in circuits with π junctions make it possible to improve the coupling between the parts of a reversible computer by a factor more than 2. At the same time, the continuous evolution of the state is ensured at higher critical currents and higher characteristic voltages of the main Josephson junctions of adiabatic superconducting logic cells, which allows an increase in the response rate.

作者简介

G. Khismatullin

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Russian Quantum Center

Email: nvklenov@mail.ru
Moscow, 119991 Russia;Skolkovo, Moscow, 121205 Russia

N. Klenov

Faculty of Physics, Moscow State University;National University of Science and Technology MISiS

Email: nvklenov@mail.ru
Moscow, 119991 Russia;Moscow, 119049 Russia

I. Solov'ev

Faculty of Physics, Moscow State University;National University of Science and Technology MISiS

编辑信件的主要联系方式.
Email: nvklenov@mail.ru
Moscow, 119991 Russia;Moscow, 119049 Russia

参考

  1. D. S. Holmes, A.L. Ripple, and M.A. Manheimer, IEEE Trans. Appl. Supercond. 23, 1701610 (2013).
  2. S.K. Tolpygo, Low Temp. Phys. 42, 361 (2016).
  3. I. I. Soloviev, N.V. Klenov, S.V. Bakurskiy, M.Y. Kupriyanov, A. L. Gudkov, and A. S. Sidorenko, Beilstein J. Nanotechnol. 8, 2689 (2017).
  4. M. Cuthbert, E. DeBenedictis, R.L. Fagaly et al. (Collaboration), International roadmap for devices and systems. Cryogenic electronics and quantum information processing. 2022 Edition (IEEE, 2022).
  5. N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, Supercond. Sci. Technol. 26, 035010 (2013).
  6. N. Takeuchi, K. Ehara, K. Inoue, and Y. Yamanashi, IEEE Trans. Appl. Supercond. 23, 1700304 (2013).
  7. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, Appl. Phys. Lett. 102, 052602 (2013).
  8. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, Appl. Phys. Lett. 103, 062602 (2013).
  9. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, Sci. Rep. 4, 6354 (2014).
  10. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, Supercond. Sci. Technol. 28, 015003 (2015).
  11. C. L. Ayala, T. Tanaka, R. Saito, M. Nozoe, N. Takeuchi, and N. Yoshikawa, IEEE J. Solid-State Circuits 56(4), 1152 (2020).
  12. H. Takayama, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, J. Phys. Conf. Ser. 1054, 012063 (2018).
  13. C. L. Ayala, T. Tanaka, R. Saito, and N. Yoshikawa, Superconducting News Forum, STP723, 1EOr2B-0, Institute of Electrical and Electronics Engineers, N.Y., NY, United States (2023).
  14. R. Cai, A. Ren, O. Chen, N. Liu, C. Ding, X. Qian, J. Han, W. Luo, N. Yoshikawa, and Y. Wang, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA), 19339165, Association for Computing Machinery, N.Y., NY, United States (2019).
  15. V.A. Vozhakov, M.V. Bastrakova, N.V. Klenov, I. I. Soloviev, W.V. Pogosov, D.V. Babukhin, A.A. Zhukov, and A.M. Satanin, Phys.-Uspekhi 65, 421 (2022).
  16. I. I. Soloviev, N.V. Klenov, A. L. Pankratov, L. S. Revin, E. Il'ichev, and L. S. Kuzmin, Physical Review B 92, 014516 (2015).
  17. R. Harris, A. J. Berkley, M.W. Johnson, P. Bunyk, S. Govorkov, M.C. Thom, S. Uchaikin, A.B. Wilson, J. Chung, E. Holtman, J.D. Biamonte, A.Yu. Smirnov, M.H. S. Amin, A.M. van den Brink, Phys. Rev. Lett. 98, 177001 (2007).
  18. R. Harris, T. Lanting, A. J. Berkley, J. Johansson, M.W. Johnson, P. Bunyk, E. Ladizinsky, N. Ladizinsky, T. Oh, and S. Han, Phys. Rev. B 80, 052506 (2009).
  19. N. Takeuchi, T. Yamae, W. Luo, F. Hirayama, T. Yamamoto, and N. Yoshikawa, Phys. Rev. Res. 5, 013145 (2023).
  20. M.V. Bastrakova, N.V. Klenov, V. I. Ruzhickiy, I. I. Soloviev, and A.M. Satanin, Supercond. Sci. Technol. 35(5), 055003 (2022).
  21. Semenov, G.V. Danilov, and D.V. Averin, IEEE Trans. Appl. Supercond. 13, 938 (2003).
  22. V.K. Semenov, G.V. Danilov, and D.V. Averin, IEEE Trans. Appl. Supercond. 17, 455 (2007).
  23. J. Ren, V.K. Semenov, Y.A. Polyakov, D.V. Averin, and J. S. Tsai, IEEE Trans. Appl. Supercond. 19, 961 (2009).
  24. J. Ren and V.K. Semenov, IEEE Trans. Appl. Supercond. 21, 780 (2011).
  25. H. Li, J. Liu, Y. Zhang, H. Cai, G. Li, Q. Liu, S. Han, and W. Chen, Supercond. Sci. Technol. 30, 035012 (2017).
  26. N. Takeuchi, T. Ortlepp, Y. Yamanashi, and N. Yoshikawa, J. Appl. Phys. 115, 103910 (2014).
  27. N. Takeuchi, Y. Yamanashi, and N. J. Yoshikawa, J. Appl. Phys. 117, 173912 (2015).
  28. Q. Xu, C. L. Ayala, N. Takeuchi, Y. Murai, Y. Yamanashi, and N. Yoshikawa, IEEE Trans. Appl. Supercond. 27, 1301905 (2017).
  29. N. Takeuchi, Ph.D. Thesis, The Department of Physics, Electrical and Computer Engineering, Yokohama National University, Yokohama, Japan (2014).
  30. N. Takeuchi, K. Arai, and N. Yoshikawa, Supercond. Sci. Technol. 33, 065002 (2020).
  31. T. Yamae, N. Takeuchi, and N. Yoshikawa, IEEE Trans. Appl. Supercond. 33, 1300704 (2023).
  32. M.V. Bastrakova, D. S. Pashin, D.A. Rybin, A.E. Schegolev, N.V. Klenov, I. I. Soloviev, A.A. Gorchavkina, and A.M. Satanin, Beilstein J. Nanotechnol. 13, 653 (2022).
  33. V. Vozhakov, M. Bastrakova, N. Klenov, A. Satanin, and I. Soloviev, Quantum Science and Technology 8(3), 035024 (2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023