Multicomponent Current Sheet of the Magnetopause with an Arbitrary Energy Distribution of Particles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An exact solution to the Maxwell–Vlasov equations has been found for a large class of multicomponent current sheets in collisionless plasma, which describe the spatial structure of the current in the magnetopause and consistent inhomogeneous anisotropic momentum distributions of particles with different effective temperatures. Devised sheets allow a nonmonotonic variation of the magnetic field and can have asymmetric, multihump, and sign-alternating profiles of the current density. Profiles of the current of different particle populations can have different scales, contain countercurrents, and be spatially shifted with respect to each other. The model under consideration is applicable to qualitatively describe a magnetopause separating a magnetosphere of a planet from a solar wind or separating regions of the solar wind with different parameters of the plasma and magnetic field.

作者简介

A. Nechaev

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia

Vl. Kocharovskiy

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia

V. Kocharovskiy

Department of Physics and Astronomy, Texas A&M University

Email: a.nechaev@ipfran.ru
TX 77843, College Station, USA

M. Garasev

Federal Research Center Institute of Applied Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: a.nechaev@ipfran.ru
603950, Nizhny Novgorod, Russia

参考

  1. A.B. Lotekar, I.Y. Vasko, T. Phan, S.D. Bale, T.A. Bowen, J. Halekas, A.V. Artemyev, Yu.V. Khotyaintsev, and F. S. Mozer, Astrophys. J. 929, 58 (2022).
  2. J. L. Burch and T.D. Phan, Geophys. Res. Lett. 43, 8327 (2016).
  3. R. Nakamura, A. Varsani, K. J. Genestreti et al. (Collaboration), Journal of Geophysical Research: Space Physics 123, 1260 (2018).
  4. C. Norgren, D.B. Graham, Y.V. Khotyaintsev, M. Andr'e, A. Vaivads, M. Hesse, E. Eriksson, P.-A. Lindqvist, B. Lavraud, J. Burch, S. Fuselier, W. Magnes, D. J. Gershman, and C.T. Russell, Journal of Geophysical Research: Space Physics 123, 9222 (2018).
  5. P. Louarn, A. Fedorov, E. Budnik, G. Fruit, J.A. Sauvaud, C.C. Harvey, I. Dandouras, H. R'eme, M.C. Dunlop, and A. Balogh, Geophys. Res. Lett. 31, L19805 (2004).
  6. M.W. Dunlop, M.G.G.T. Taylor, Y.V. Bogdanova et al. (Collaboration), Journal of Geophysical Research: Space Physics 113, A07S19 (2008).
  7. S. Haaland, A. Runov, A. Artemyev, and V. Angelopoulos, Journal of Geophysical Research: Space Physics 124, 3421 (2019).
  8. L. F. Burlaga, N.F. Ness, D.B. Berdichevsky, J. Park, L.K. Jian, A. Szabo, E.C. Stone, and J.D. Richardson, Nat. Astron. 3, 1007 (2019).
  9. S.M. Krimigis, R.B. Decker, E.C. Roelof, M. E. Hill, C.O. Bostrom, K. Dialynas, G. Gloeckler, D.C. Hamilton, E.P. Keath, and L. J. Lanzerotti, Nat. Astron. 3, 997 (2019).
  10. J.D. Richardson, J.W. Belcher, P. Garcia-Galindo, and L. F. Burlaga, Nat. Astron. 3, 1019 (2019).
  11. D.A. Gurnett and W. S. Kurth, Nat. Astron. 3, 1024 (2019).
  12. J.R. Shuster, D. J. Gershman, J.C. Dorelli et al. (Collaboration), Nat. Phys. 17, 1056 (2021).
  13. M.M. Echim and J. F. Lemaire, Phys. Rev. E 72, 036405 (2005).
  14. N. Dorville, G. Belmont, N. Aunai, J. Dargent, and L. Rezeau, Phys. Plasmas 22, 092904 (2015).
  15. S.P. Gary, Theory of space plasma microinstabilities, Cambridge University Press, Cambridge (1993), 184 p.
  16. V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and S.V. Tarasov, Phys.-Uspekhi 59, 1165 (2016).
  17. O. Allanson, F. Wilson, T. Neukirch, Y.-H. Liu, and J.D.B. Hodgson, Geophys. Res. Lett. 44, 8685 (2017).
  18. T. Neukirch, I.Y. Vasko, A.V. Artemyev, and O. Allanson, Astrophys. J. 891, 86 (2020).
  19. E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Pergamon, Oxford (1981), p. 115.
  20. V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and A.A. Nechaev, Astron. Lett. 45, 551 (2019).
  21. Vl.V. Kocharovsky, V.V. Kocharovsky, and A.A. Nechaev, Dokl. Phys. 66, 9 (2021).
  22. V.V. Kocharovsky, Vl.V. Kocharovsky, V.Yu. Martyanov, and A.A. Nechaev, J. Phys. Conf. Ser. 932, 012019 (2017).
  23. T. Silva, B. Afeyan, and L.O. Silva, Phys. Rev. E 104, 035201 (2021).
  24. A.A. Kuznetsov, V.V. Kocharovskii, Vl.V. Kocharovskii, A.A. Nechaev, and M.A. Garasev, Plasma Phys. Rep. 48, 973 (2022).
  25. K.Yu. Vagin and S.A. Uryupin, Plasma Phys. Rep. 40, 393 (2014).
  26. T.D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N. J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, and C.P. Ridgers, Plasma Phys. Control. Fusion 57, 113001 (2015).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023