Smith–Purcell Radiation Driven by the Field of a Standing Laser Wave

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Smith–Purcell radiation is well known as a source of quasi-monochromatic electromagnetic radiation that occurs when fast electrons move above a diffraction grating. In this paper, we calculated the Smith–Purcell radiation generation from a flat surface along which there is a field of a standing laser wave. A periodically changing laser field induces a periodic inhomogeneity in the distribution of electrons in the near-surface layer. This periodicity, being an analogue of a diffraction grating, leads to the possibility of generating Smith–Purcell radiation. It is shown that the properties of Smith–Purcell radiation from such an unusual “light” grating are also unusual: the dispersion relation, unlike the standard for Smith–Purcell radiation, does not contain diffraction orders, so that all radiation is concentrated in one peak. The calculated effect makes it possible to control the radiation frequency or angle by changing the laser frequency and may be of interest for the development of new compact radiation sources with tunable characteristics and for non-invasive diagnostics of relativistic electron beams.

作者简介

A. Tishchenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Laboratory of Radiation Physics, Belgorod National Research University

编辑信件的主要联系方式.
Email: tishchenko@mephi.ru
115409, Moscow, Russia; 308034, Belgorod, Russia

参考

  1. S. J. Smith and E.M. Purcell, Phys. Rev. 92, 1069 (1953).
  2. И.М. Франк, Известия АН СССР, сер. Физ. 6, 3 (1942).
  3. Б.М. Болотовский, Г.В. Воскресенский, УФН 88, 209-251 (1966)
  4. B.M. Bolotovskii and G.V. Voskresenskii, Sov. Phys. Usp. 9, 73 (1966).
  5. Б.М. Болотовский, Г.В. Воскресенский, УФН 94, 378 (1968)
  6. B.M. Bolotovskii and G.V. Voskresenskii, Sov. Phys. Usp. 11, 143 (1968).
  7. S. J. Glass and H. Mendlowitz, Phys. Rev. 174, 57 (1968).
  8. V.P. Shestopalov, The Smith-Purcell Effect, Nova Science Publishers, Commack, NY (1998).
  9. G. Doucas, J.H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, Phys. Rev. Lett. 69, 1761 (1992).
  10. P. Rullhusen, X. Artru, and P. Dhez, Novel Radiation Sources Using Relativistic Electrons, World Scientific, Singapore (1998).
  11. A.P. Potylitsyn, Phys. Lett. A 238, 112 (1998).
  12. Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa, T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi, T. Matsuyama, K. Kobayashi, and Y. Fujita, Phys. Rev. E 57, 1061 (1998).
  13. G. Kube, H. Backe, H. Euteneuer, A. Grendel, F. Hagenbuck, H. Hartmann, K.H. Kaiser, W. Lauth, H. Schope, G. Wagner, Th. Walcher, and M. Kretzschmar, Phys. Rev. E 65, 056501 (2002).
  14. М.И. Рязанов, М.Н. Стриханов, А.А. Тищенко, ЖЭТФ 126, 349 (2004)
  15. M. I. Ryazanov, M.N. Strikhanov, and A.A. Tishchenko, JETP 99, 311 (2004).
  16. I. Kaminer, S.E. Kooi, R. Shiloh, B. Zhen, Y. Shen, J. J. L'opez, R. Remez, S.A. Skirlo, Y. Yang, J.D. Joannopoulos, A. Arie, and M. Soljaˇci'c, Phys. Rev. X 7, 011003 (2017).
  17. C. Roques-Carmes, S.E. Kooi, Y. Yang, A. Massuda, P.D. Keathley, A. Zaidi, Y. Yang, J.D. Joannopoulos, K.K. Berggren, I. Kaminer, and M. Soljaˇci'c, Nat. Commun. 10, 3176 (2019).
  18. F. J. Garci'a de Abajo, Rev. Mod. Phys. 82, 209 (2010).
  19. N. Rivera and I. Kaminer, Nat. Rev. Phys. 2, 538 (2020).
  20. A.A. Tishchenko and D.Yu. Sergeeva, Phys. Rev. B 100, 235421 (2019).
  21. T. Ochiai and K. Ohtaka, Opt. Express 13, 7683 (2005).
  22. N. Horiuchi, T. Ochiai, J. Inoue, Y. Segawa, Y. Shibata, K. Ishi, Y. Kondo, M. Kanbe, H. Miyazaki, F. Hinode, S. Yamaguti, and K. Ohtaka, Phys. Rev. E 74, 056601 (2006).
  23. D. Yu. Sergeeva, A.A. Tishchenko, and M.N. Strikhanov, Nucl. Instrum. Methods B 402, 206 (2017).
  24. D. I. Garaev, D.Yu. Sergeeva, and A.A. Tishchenko, Phys. Rev. B 103, 075403 (2021).
  25. А.А. Тищенко, Д.Ю. Сергеева, Письма в ЖЭТФ 115, 762 (2022)
  26. D.Yu. Sergeeva and A.A. Tishchenko, JETP Lett. 115(12), 713 (2022).
  27. D.Yu. Sergeeva, D. I. Garaev, and A.A. Tishchenko, JOSA B 39, 3275 (2022).
  28. Y. Yang, A. Massuda, C. Roques-Carmes, S.E. Kooi, T. Christensen, S.G. Johnson, J.D. Joannopoulos, O.D. Miller, I. Kaminer, and M. Soljaˇci'c, Nature Phys. 14, 894 (2018).
  29. L. Liang, W. Liu, Y. Liu, Q. Jia, L. Wang, and Y. Lu, Appl. Phys. Lett. 113, 013501 (2018).
  30. A. Pizzi, G. Rosolen, L. J. Wong, R. Ischebeck, M. Soljaˇci'c, T. Feurer, and I. Kaminer, Adv. Sci. 7, 1901609 (2020).
  31. D.Yu. Sergeeva, A. S. Aryshev, A.A. Tishchenko, K.E. Popov, N. Terunuma, and J. Urakawa, Opt. Lett. 46, 544 (2021).
  32. A. Karnieli, D. Roitman, M. Liebtrau, S. Tsesses, N.V. Nielen, I. Kaminer, A. Arie, and A. Polman, Nano Lett. 22, 5641 (2022).
  33. R. Remez, A. Karnieli, S. Trajtenberg-Mills, N. Shapira, I. Kaminer, Y. Lereah, and A. Arie, Phys. Rev. Lett. 123, 060401 (2019).
  34. D.V. Karlovets and A.M. Pupasov-Maksimov, Phys. Rev. A 103, 012214 (2021).
  35. A. Pupasov-Maksimov and D. Karlovets, Phys. Rev. A 105, 042206 (2022).
  36. Z. Chen, M. Jin, L. Mao, X. Shi, N. Bai, and X. Sun, Opt. Lett. 47, 2911 (2022).
  37. М.Л. Тер-Микаелян, Влияние среды на электромагнитные процессы при высоких энергиях, Изд-во АН АрмССР, Ереван (1969)
  38. M. L. Ter-Mikaelian, High-Energy Electromagnetic Processes in Condensed Media, Wiley-Interscience, N.Y. (1972).
  39. Л.Д. Ландау, Е.М. Лифшиц, Электродинамика сплошных сред, Курс теоретической физики, Наука, M. (1992), т. 8
  40. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1993).
  41. B. Crockett, J. van Howe, N. Montaut, R. Morandotti, and J. Azana, Laser Photonics Rev. 16, 2100635 (2022).
  42. E. Ridente, M. Mamaikin, N. Altwaijry, D. Zimin, M. F. Kling, V. Pervak, M. Weidman, F. Krausz, and N. Karpowicz, Nature Commun. 13, 1111 (2022).
  43. R. Pompili, M. P. Anania, M. Bellaveglia, A. Biagioni, G. Castorina, E. Chiadroni, A. Cianchi, M. Croia, D. Di Giovenale, and M. Ferrario, New J. Phys. 18, 083033 (2016).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023