Mass Spectra of New Heterocycles: XXVI. Electron Impact and Chemical Ionization Study of N-[5-Amino-2-thienyl]- and N-[2-(Methylsulfanyl)-1,3-thiazol-5-yl]isothioureas
- Autores: Klyba L.V1, Sanzheeva E.R1, Nedolya N.A1, Tarasova O.A1
-
Afiliações:
- Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
- Edição: Volume 59, Nº 7 (2023)
- Páginas: 895-903
- Seção: Articles
- URL: https://journals.eco-vector.com/0514-7492/article/view/666231
- DOI: https://doi.org/10.31857/S0514749223070030
- EDN: https://elibrary.ru/HSFRXX
- ID: 666231
Citar
Resumo
The behavior of a representative series of previously unknown N -(5-amino-2-thienyl)- and N -[2-(methylsulfanyl)-1,3-thiazol-5-yl]isothioureas under electron ionization (70 eV) has been studied for the first time. 2-Thienylisothioureas form a fairly stable molecular ion ( I rel 11-25%), whereas there are no peaks of molecular ions in the mass spectra of 1,3-thiazolylisothioureas. The common direction of the decay of the molecular ion of 2-thienyl- and 1,3-thiazolylisothiourea is the breaking of the C-N bond in the isothiourea fragment with the localization of the charge on the imine nitrogen atom and the formation of the ion [R3SC≡NR2]+ ( I rel 34-100%), and for thienyl derivatives also the ion [ M - R3SC=NR2]+ (with the localization of the charge on the amine nitrogen atom). Moreover, the last ion is the main one ( I rel 91-100%). Peaks of [ M - MeSCN]+• and [MeSCS]+ ions have also been identified in the spectra of 1,3-thiazolylisothioureas, the appearance of which is associated with the decay of the thiazole cycle in a molecular ion. In addition, unlike 2-thienylisothioureas, for the studied 1,3-thiazolylisothioureas, there is a break in the Chet-N bond with the localization of the charge on the thiazole-containing fragment.
Sobre autores
L. Klyba
Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
Email: klyba@irioch.irk.ru
E. Sanzheeva
Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
N. Nedolya
Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
O. Tarasova
Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences
Bibliografia
- Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2023, 58, 596-602.
- Klyba L.V., Sanzheeva E.R., Nedolya N.A., Tarasova O.A. Russ. J. Org. Chem. 2023, 58, 776-781. doi: 10.1134/S1070428023050056
- Steppeler F., Iwan D., Wojaczyńska E., Wojaczyński J. Molecules. 2020, 25, 401. doi: 10.3390/molecules25020401
- Shakeel A., Altaf A.A., Qureshi A.M., Badshah A. J. Drug Des. Med. Chem. 2016, 2, 10-20. doi: 10.11648/j.jddmc.20160201.12
- Khan E., Khan S., Gul Z., Muhammad M. Critical Rev. Analyt. Chem. 2021, 51, 812-834. doi: 10.1080/10408347.2020.1777523
- Saeed A., Mustafa M.N., Zain-Ul-Abideen M., Shabir G., Erben M.F., Flörke U. J. Sulfur Chem. 2019, 40, 312-350. doi: 10.1080/17415993.2018.1551488
- Goncalves I.L., de Azambuja G.O., Kawano D.F., Eifler-Lima V.L. Mini. Rev. Org. Chem. 2018, 15, 28-35. doi: 10.2174/157019314666170518125219
- Li J., Shi L.-L., Chen J., Gong J., Yang Z. Synthesis. 2014, 46, 2007-2023. doi: 10.1055/s-0034-1378209
- Biswas A., Mondal H., Maji M.S. J. Heterocycl. Chem. 2020, 57, 3818-3844. doi: 10.1002/jhet.4119
- McLaughlin C., Smith A.D. Chem. Eur. J. 2021, 27, 1533-1555. doi: 10.1002/chem.202002059
- Saeed A., Flörke U., Erben M.F. J. Sulfur Chem. 2014, 35, 318-355. doi: 10.1080/17415993.2013.834904
- Blažek Bregović V., Basarić N., Mlinarić-Majerski K. Coord. Chem. Rev. 2015, 295, 80-124. doi: 10.1016/j.ccr.2015.03.011
- Sulthana M.T., Alagarsamy V., Chitra K. Med. Chem. (Sharjah, United Arab Emirates). 2021, 17, 352-368. doi: 10.2174/1573406416666200817153033
- Ma C., Wu A., Wu Y., Ren X., Cheng M. Archiv Pharm. (Weinheim, Germany). 2013, 346, 891-900. doi: 10.1002/ardp.201300276
- Siddiqui N., Alam M.S., Sahu M., Naim M.J., Yar M.S., Alam O. Bioorg. Chem. 2017, 71, 230-243. doi: 10.1016/j.bioorg.2017.02.009
- Pucko E., Matyja E., Koronkiewicz M., Ostrowski R.P., Kazimierczuk Z. Anticancer Res. 2018, 38, 2691-2705. doi: 10.21873/anticanres.12511
- Narendhar B., Chitra K., Alagarsamy V. Pharm. Chem. J. 2021, 55, 54-59. doi: 10.1007/s11094-021-02371-7
- Sperry J.B., Wright D.L. Curr. Opin. Drug Discov. Devel. 2005, 8, 723-740. doi: 10.1002/chin.200615242
- Handbook of Oligo- and Polythiophenes. Ed. D. Fichou. Weinheim: Wiley-VCH. 1999.
- Gupta V., Kant V. Sci. Int. 2013, 1, 253-260. doi: 10.17311/sciintl.2013.253.260
- Siddiqui N., Arshad M.F., Ahsan W., Alam M.S. Int. J. Pharm. Sci. Drug Res. 2009, 1, 136-143.
- Grehn L. J. Heterocycl. Chem. 1978, 15, 81-87. doi: 10.1002/jhet.5570150118
- McCarthy W.C., Foss L.E. J. Org. Chem. 1977, 42, 1508-1510. doi: 10.1021/jo00429a004
- Al-Omran F., El-Khair A.A. J. Heterocycl. Chem. 2004, 41, 909-914. doi: 10.1002/jhet.5570410610
- Dolzhenko A.V. Heterocycles. 2011, 83, 1489-1525. doi: 10.3987/REV-11-701
- Venkatachalam T.K., Sudbeck E.A., Mao C., Uckun F.M. Bioorg. Med. Chem. Lett. 2001, 11, 523-528. doi: 10.1016/S0960-894X(01)00011-7
- Tarasova O.A., Nedolya N.A., Albanov A.I., Trofimov B.A. ChemistrySelect. 2020, 5, 5726-5731. doi: 10.1002/slct.202000577
- Nedolya N.A. Novel Chemistry Based on Isothiocyanates and Polar Organometallics. PhD Thesis. Utrech University, Netherlands, 1999.
- Клыба Л.В., Санжеева Е.Р., Недоля Н.А., Тарасова О.А. ЖОрХ. 2023, 59, 38-46.
- Klyba L.V., Sanzheeva E.R., Nedolya N.A., Tarasova O.A. Russ. J. Org. Chem. 2023, 59, 62-72. doi: 10.1134/S1070428023010037
Arquivos suplementares
