Development of Microplate Immunoenzyme Determination of Nonylphenol with Magnetic Sample Concentration
- Autores: Berlina A.N.1, Barshevskaya L.V.1, Serebrennikova K.V.1, Komova N.S.1, Zherdev A.V.1, Dzantiev B.B.1
- 
							Afiliações: 
							- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
 
- Edição: Volume 60, Nº 3 (2024)
- Páginas: 315-322
- Seção: Articles
- URL: https://journals.eco-vector.com/0555-1099/article/view/674558
- DOI: https://doi.org/10.31857/S0555109924030108
- EDN: https://elibrary.ru/EWAIEK
- ID: 674558
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Nonylphenol is an aromatic organic compound that has an estrogen-like effect and has a negative effect on the human endocrine system. A method has been developed for the competitive determination of nonylphenol using magnetic particles, rabbit antiserum, nonylphenol conjugate with soybean trypsin inhibitor (STI) and biotin. The principle of the analysis is the formation of immune complexes on the surface of magnetite particles due to covalent immobilization of protein G through the oriented immobilization of polyclonal antibodies from rabbit serum during a competitive reaction between the free analyte (nonylphenol) and the bound one (as part of the nonylphenol-STI-biotin conjugate) for the binding sites of specific antibodies. The detection of formed immune complexes is proposed to be carried out using a streptavidin-polyperoxidase conjugate, which makes it possible to achieve a nine-fold gain in the level of the analytical signal. The developed ELISA using magnetite particles allows us to achieve a detection limit of nonylphenol at the level of 3.8 ng/ml, which is 14.5 times lower in comparison with the classical competitive ELISA (55 ng/ml). Based on the results of the experimental work, the optimized volume of the test sample was 500 μl, which makes it possible to concentrate low-contaminated samples by 17 times.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Berlina
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: dzantiev@inbi.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
L. Barshevskaya
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
														Email: dzantiev@inbi.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
K. Serebrennikova
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
														Email: dzantiev@inbi.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
N. Komova
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
														Email: dzantiev@inbi.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Zherdev
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
														Email: dzantiev@inbi.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
B. Dzantiev
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
														Email: dzantiev@inbi.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Evans A.E.V., Mateo-Sagasta J., Qadir M., Boelee E., Ippolito A. // Curr. Opin. Environ. Sustain. 2019. V. 36. P. 20–27.
- Zamora-Ledezma C., Negrete-Bolagay D., Figueroa F., Zamora-Ledezma E., Ni M., Alexis F., Guerrero V.H. // Environ. Technol. Innov. 2021. V. 22. Article 101504. https://doi.org/10.1016/j.eti.2021.101504
- Fang W., Peng Y., Muir D., Lin J., Zhang X. // Environ. Int. 2019. V. 131. Article 104994. https://doi.org/10.1016/j.envint.2019.104994
- Fuller R., Landrigan P.J., Balakrishnan K., Bathan G., Bose-O’Reilly S., Brauer M. et al. // Lancet Planet. Health. 2022. V. 6. № 6. P. e535–e547.
- Palani G., Arputhalatha A., Kannan K., Lakkaboyana S.K., Hanafiah M.M., Kumar V., Marella R.K. // Molecules. 2021. V 26. № 9. Article 2799. https://doi.org/10.3390/molecules26092799
- Babuji P., Thirumalaisamy S., Duraisamy K., Periyasamy G. // Water. 2023. V. 15. № 14. Article 2532. https://doi.org/10.3390/w15142532
- Bhandari G., Bagheri A.R., Bhatt P., Bilal M. // Chemosphere. 2021. V. 275. Article 130013. https://doi.org/10.1016/j.chemosphere.2021.130013
- Gałązka A., Jankiewicz U. // Microorganisms. 2022. V. 10. № 11. Article 2236. https://doi.org/10.3390/microorganisms10112236
- Morin-Crini N., Lichtfouse E., Liu G., Balaram V., Ribeiro A.R. L., Lu Z. et al.. // Environ. Chem. Lett. 2022. V. 20. № 4. P. 2311–2338.
- Chen Y., Yang J., Yao B., Zhi D., Luo L., Zhou Y. // Environ. Pollut. 2022. V. 310. Article 119918. https://doi.org/10.1016/j.envpol.2022.119918
- Hong Y., Feng C., Yan Z., Wang Y., Liu D., Liao W., Bai Y. // Environ. Chem. Lett. 2020. V. 18. № 6. P. 2095–2106.
- Careghini A., Mastorgio A.F., Saponaro S., Sezenna E. // Environ. Sci. Pollut. Res. 2015. V. 22. № 8. P. 5711–5741.
- Jardak K., Drogui P., Daghrir R. // Environ. Sci. Pollut. Res. 2016. V. 23. № 4. P. 3195–3216.
- Lu D., Yu L., Li M., Zhai Q., Tian F., Chen W. // Chemosphere. 2021. V. 275. Article 129973. https://doi.org/10.1016/j.chemosphere.2021.129973
- Noorimotlagh Z., Mirzaee S.A., Martinez S.S., Rachoń D., Hoseinzadeh M., Jaafarzadeh N. // Environ Res. 2020. V. 184. Article 109263. https://doi.org/10.1016/j.envres.2020.109263
- Directive 2013/39/eu of the European parliament and of the council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy.
- Shih H.-K., Shu T.-Y., Ponnusamy V. K., Jen J.-F. // Anal. Chim. Acta. 2015. V. 854. P. 70–77.
- Vargas-Berrones K., Díaz de León-Martínez L., Bernal-Jácome L., Rodriguez-Aguilar M., Ávila-Galarza A., Flores-Ramírez R. // Talanta. 2020. V. 209. Article 120546. https://doi.org/10.1016/j.talanta.2019.120546
- Aparicio I., Martín J., Santos J.L., Malvar J.L., Alonso E. // J. Chromatogr. A. 2017. V. 1500. P. 43–52.
- Yin H.-L., Zhou T.-N. // Chinese J. Anal. Chem. 2022. V. 50. № 8. Article 100112. https://doi.org/10.1016/j.cjac.2022.100112
- Céspedes R., Skryjová K., Raková M., Zeravik J., Fránek M., Lacorte S., Barceló D. // Talanta. 2006. V. 70. № 4. P. 745–751.
- Matsui K., Kawaji I., Utsumi Y., Ukita Y., Asano T., Takeo M., Kato D.-i., Negoro S. // J. Biosci. Bioeng. 2007. V. 104. № 4. P. 347–350.
- Yakovleva J.N., Lobanova A.Y., Shutaleva E.A., Kourkina M.A., Mart’ianov A.A., Zherdev A.V., Dzantiev B.B., Eremin S.A. // Anal. Bioanal. Chem. 2004. V. 378. № 3. P. 634–641.
- Ermolaeva T.N., Dergunova E.S., Kalmykova E.N., Eremin S.A. // J. Anal. Chem. 2006. V. 61. № 6. P. 609–613.
- Badea M., Nistor C., Goda Y., Fujimoto S., Dosho S., Danet A., Barceló D., Ventura F., Emnéus J. // Analyst. 2003. V. 128. № 7. P. 849–856.
- Mart’ianov A.A., Zherdev A.V., Eremin S.A., Dzantiev B.B. // Int. J. Env. Anal. Chem. 2004. V. 84. № 13. P. 965–978.
- Mart’ianov A.A., Dzantiev B.B., Zherdev A.V., Eremin S.A., Cespedes R., Petrovic M., Barcelo D. // Talanta. 2005. V. 65. № 2. P. 367–374.
- Berlina A.N., Komova N.S., Serebrennikova K.V., Zherdev A.V., Dzantiev B.B. // Engineering Proceedings. 2023. V. 48. № 1. Article 9. https://doi.org/10.3390/CSAC2023–14919.
- Berlina A.N., Ragozina M.Y., Gusev D.I., Zherdev A.V., Dzantiev B.B. // Chemosensors. 2023. V. 11. № 7. Article 393. https://doi.org/10.3390/chemosensors11070393.
- Kuang H., Liu L., Xu L., Ma W., Guo L., Wang L., Xu C. // Sensors. 2013. V. 13. № 7. P. 8331–8339.
- Kato M., Ihara Y., Nakata E., Miyazawa M., Sasaki M., Kodaira T., Nakazawa H. // Food and Agricultural Immunology. 2007. V. 18. № 3–4. P. 179–187.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









