Dissipative theory in the residential buildings pipe-concrete structures study

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The pipe-concrete structures stress-strain state and load-bearing capacity abstract theorem are discussed in this article and experimental studies are carried out to confirm them. Pipe concrete structures prototypes were made of high-strength concrete with spiral reinforcement and high-strength longitudinal reinforcement. The developed compressed pipe-concrete structures have increased strength and have high ultimate axial deformations. Significantly greater energy is required compared to traditionally used load-bearing elements to destroy such a structure. This circumstance makes them especially attractive for use in buildings and structures erected in seismically active zones, as well as for unique buildings and structures. The compressed pipe-concrete element design was improved based on the research results. It was possible to significantly increase its strength compared to known analogues due to the high-strength tensile concrete use. Such elements maximum deformation exceeds 1%, which opens up good opportunities for use. The developed structure high strength and ductility indicate that their destruction requires a large energy. It will significantly increase the frames survivability made of using pipe-concrete elements.

Full Text

Restricted Access

About the authors

V. I. Rimshin

Scientific-Research Institute of Building Physics of RAACS; National Research Moscow State University of Civil Engineering

Author for correspondence.
Email: v.rimshin@niisf.ru

Doctor of Sciences (Engineering), Professor, Corresponding Member of RAACS 

Russian Federation, Moscow; Moscow

A. L. Krishan

Nosov Magnitogorsk State Technical University

Email: kris_al@mail.ru

Doctor of Sciences (Engineering), Professor, Adviser of RAACS 

Russian Federation, Magnitogorsk

M. A. Astafeva

Nosov Magnitogorsk State Technical University

Email: skymanika@mail.ru

Candidate of Sciences (Engineering), Docent 

Russian Federation, Magnitogorsk

E. S. Ketsko

National Research Moscow State University of Civil Engineering

Email: kkuzzina@mail.ru

Postgraduate student 

Russian Federation, Moscow

G. S. Bykov

National Research Moscow State University of Civil Engineering

Email: admin.nex@gmail.com

Engineer 

Russian Federation, Moscow

References

  1. Римшин В.И., Кришан А.Л., Астафьева М.А. Самозаклинивающиеся элементы в трубобетонных колоннах // Academia. Архитектура и строительство. 2023. № 3. С. 140–148. Rimshin V.I., Krishan A.L., Astafieva M.A. Self-jamming elements in pipe-concrete columns. Academia. Arkhitektura i stroitel’stvo. 2023. No. 3, pp. 140–148. (In Russian).
  2. Кришан А.Л., Римшин В.И., Астафьева М.А., Ступак А.А., Анпилов С.М. Учет гибкости при расчете прочности центрально-сжатых трубобетонных колонн квадратного сечения // Строительство и реконструкция. 2023. № 4 (108). С. 47–56. Krishan A.L., Rimshin V.I., Astafieva M.A., Stupak A.A., Anpilov S.M. Taking into account flexibility when calculating the strength of centrally compressed tube-concrete columns of square section. Stroitel’stvo i rekonstruktsiya. 2023. No. 4 (108), pp. 47–56. (In Russian).
  3. Римшин В.И., Анпилов С.М., Кришан А.Л., Астафьева М.А., Ступак А.А. Прочность коротких трубобетонных колонн квадратного сечения // Русский инженер. 2023. № 2 (79). С. 46–48. Rimshin V.I., Anpilov S.M., Krishan A.L., Astafieva M.A., Stupak A.A. Strength of short tube-concrete columns of square section. Russkii inzhener. 2023. No. 2 (79), pp. 46–48. (In Russian).
  4. Кришан А.Л., Римшин В.И., Астафьева М.А., Ступак А.А., Сулейманова Л.А., Логунова М.А. SQCFST_1_1 Свидетельство о регистрации программы для ЭВМ RU 2022683412, 05.12.2022. Заявка № 2022682987 от 28.11.2022. Krishan A.L., Rimshin V.I., Astafieva M.A., Stupak A.A., Suleymanova L.A., Logunova M.A. SQCFST_1_1 Certificate of registration of the computer program RU 2022683412, 12/05/2022. Application No. 2022682987 dated November 28, 2022. (In Russian).
  5. Римшин В.И., Кецко Е.С., Трунтов П.С. Большой строительный словарь. Т. 1. А-О. М.: АСВ, 2022. 572 c. Rimshin V.I., Ketsko E.S., Truntov P.S. Bol’shoy stroitel’nyy slovar’. Vol. 1. A-O. [Large construction dictionary. Vol. 1. A-O.] Moscow: ASV. 2022. 572 p.
  6. Римшин В.И., Кришан А.Л., Астафьева М.А., Семенова М.Н., Курбатов В.Л. Исследования несущей способности центрально-сжатых сталетрубобетонных колонн // Жилищное строительство. 2022. № 6. С. 33–38. DOI: https://doi.org/10.31659/0044-4472-2022-6-33-38. Rimshin V.I., Krishan A.L., Astafieva M.A., Semenova M.N., Kurbatov V.L. Studies of the bearing capacity of centrally compressed steel-tube concrete columns. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 6, pp. 33–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-6-33-38
  7. Кришан А.Л., Римшин В.И., Астафьева М.А., Сагадатов А.И., Семенова М.Н., Ступак А.А. Прочность и деформативность сжатых трубобетонных элементов квадратного сечения // БСТ: Бюллетень строительной техники. 2022. № 6 (1054). С. 16–18. Krishan A.L., Rimshin V.I., Astafieva M.A., Sagadatov A.I., Semenova M.N., Stupak A.A. Strength and deformability of compressed tube-concrete elements of square section. BST. 2022. No. 6 (1054), pp. 16–18. (In Russian).
  8. Римшин В.И., Якимишин Д.В., Кришан А.Л., Астафьева М.А. Анализ эффективности применения композитных материалов для реконструкции // Университетская наука. 2022. № 2 (14). С. 83–87. Rimshin V.I., Yakimishin D.V., Krishan A.L., Astafieva M.A. Analysis of the effectiveness of using composite materials for reconstruction. Universitetskaya nauka. 2022. No. 2 (14), pp. 83–87. (In Russian).
  9. Кришан А.Л., Римшин В.И., Астафьева М.А. Сжатые трубобетонные элементы. Теория и практика. М.: АСВ, 2020. 322 с. Krishan A.L., Rimshin V.I., Astafieva M.A. Szhatyye trubobetonnyye elementy. Teoriya i praktika [Compressed pipe concrete elements. Theory and practice]. Moscow: ASV. 2020. 322 p.
  10. Римшин В.И., Кецко Е.С., Трунтов П.С. Этапы технического обследования конструкций административного здания // Жилищное строительство. 2020. № 6. С. 22–28. DOI: https://doi.org/10.31659/0044-4472-2020-6-22-28. Rimshin V.I., Ketsko E.S., Truntov P.S. Technical inspection stages of administrative building structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 6, pp. 22–28. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-6-22-28
  11. Krishan A.L., Astafeva M.A., Rimshin V.I., Chernyshova E.P. Interlocking elements application in concrete filled steel tubular columns. Advances in Transdisciplinary Engineering. Vol. 43: Hydraulic and Civil Engineering Technology. 2023, pp. 34–41. DOI https://doi.org/10.3233/ATDE230699
  12. Rimshin V.I., Telichenko V.I., Truntov P.S., Krishan A.L., Bykov G.S. Assessment of the impact of high temperature on the strength of reinforced concrete structures during operation. Key Engineering Materials. 2021. Vol. 887, pp. 460–465. DOI: https://doi.org/10.4028/www.scientific.net/KEM.887.460
  13. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement. Journal of Physics: Conference Series. Vol. 1687. International Conference on Engineering Systems. 14–16 October 2020, Moscow, Russia. DOI https://doi.org/10.1088/1742-6596/1687/1/012031
  14. Krishan A.L., Rimshin V.I., Troshkina E.A. Deformability of volume-compressed concrete core of concrete filled steel tube columns. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 753. Ch. 1. 022053. DOI https://doi.org/10.1088/1757-899X/753/2/022053
  15. Merkulov S.I., Rimshin V.I., Shubin I.L., Esipov S.M. Modeling of the stress-strain state of a composite external strengthening of reinforced concrete bending elements. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 753. Ch. 4. 052044. DOI https://doi.org/10.1088/1757-899X/753/5/052044
  16. Merkulov S., Rimshin V., Akimov E., Kurbatov V., Roschina S. Regulatory support for the use of composite rod reinforcement in concrete structures. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 896. International Conference on Materials Physics, Building Structures and Technologies in Construction, Industrial and Production Engineering (MPCPE 2020). 27–28 April 2020. Vladimir, Russian Federation. 012022 DOI https://doi.org/10.1088/1757-899X/896/1/012022
  17. Varlamov A., Kostyuchenko Y., Rimshin V., Kurbatov V. Diagrams of concrete behavior over time. IOP Conference Series Materials Science and Engineering. 2020. Vol. 896 (1). 012085. DOI: https://doi.org/10.1088/1757-899X/896/1/012085
  18. Krishan A., Troshkina E., Rimshin V. Experimental research of the strength of compressed concrete filled steel tube elements. Advances in Intelligent Systems and Computing. 2020. Vol. 1116, pp. 560–566. DOI: https://doi.org/10.1007/978-3-030-37919-3_56
  19. Krishan A.L., Rimshin V.I., Troshkina E.A. Compressed and bending concrete elements with confinement reinforcement meshes. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 753. Ch. 1. 022052. DOI https://doi.org/10.1088/1757-899X/753/2/022052

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The Badaevsky residential complex visualization fragment

Download (171KB)
3. Fig. 2. The Badaevsky residential complex 3D model

Download (51KB)

Copyright (c) 2024 ООО РИФ "СТРОЙМАТЕРИАЛЫ"

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies