Theoretical Principles Used to Study the Formation of Polyepoxyurethaneisocyanurates. Part 2


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The quantitative description of the effect of the resulting chemical structures of polyepoxyurethaneisocyanurates on the glass transition temperature Tg was carried out. This is done by selecting copolymer structures whose Tg value is comparable to the calculated one, and the error does not exceed 1.8–2%. The theoretical data were obtained on the basis of calculations of model structures using the “Cascade” computer program (INEOS RAS).

Full Text

Restricted Access

About the authors

M. D. Kejmakx

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Author for correspondence.
Email: kejmakh.margo@yandex.ru

Candidate of Sciences (Chemistry) 

Russian Federation, Moscow

M. G. Ezernitskaya

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Email: ezernits@mail.ru

Candidate of Sciences (Chemistry)

Russian Federation, Moscow

I. V. Karandy

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Email: margaret@ineos.ac.ru

Candidate of Sciences (Chemistry) 

Russian Federation, Moscow

A. A. Askadskii

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; National Research Moscow State University of Civil Engineering

Email: andrey@ineos.ac.ru

Doctor of Sciences (Сhemistry)

Russian Federation, Moscow; Moscow

References

  1. Kejmakh M.D., Ezernitskaya M.G., Karandy I.V., Askadskii A.A. Experimental data on the study of the formation processes of polyepoxyurethane isocyanurates. Part 1. Stroitel’nye Materialy [Construction Materials]. 2024. No. 5, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2024-824-5-4-11
  2. Askadskii A.A. Physical properties of polymers. Prediction and control. Amsterdam: Gordon and Breach Publishers. 1996. 336 p.
  3. Askadskii A.A., Kondrashchenko V.I. Computer materials science of polymers [Komp’yuternoe materialovedenie polimerov]. Moscow: Nauchniy Mir. 1999. 543 p.
  4. Askadskii A.A. Computational materials science of polymers. Cambridge: Cambridge International Silence Publishing. 2003. 695 p.
  5. Askadsky A.A., Goleneva L.M., Afanasyev E.S., Petunova M.D. Gradient polymer materials. Obzornyi zhurnal po khimii. 2012. No. 2 (2), pp. 115–164. (In Russian).
  6. Askadskii А.А., Goleneva L.M., Konstantinov K.V., Bychko К.А. Synthesis and investigation of properties of the gradient-modulus material based on polypropylene glycols and 2,4-toluylendiisocyanate. Russian Polymer News. 2001. No. 6 (2), pp. 6–11.
  7. Askadskii A.A., Konstantinov K.V., Goleneva L.M., Bychko K.A. Synthesis and properties of variable-modulus polyisocyanurate materials based on poly(propylene glycol) and 2,4-tolylene diisocyanat. Vysokomolekulyarnye soedineniya. Seriya A. 2002. No. 44 (4), pp. 567–576. (In Russian).
  8. Askadskii A.A., Goleneva L.M., Afanasyev E.S., Petunova M.D. Gradient polymer materials. Obzornyi zhurnal po khimii. 2012. No. 2 (4), pp. 263–318. (In Russian).
  9. Askadskii A.A. Development and properties of gradient polymeric materials. Russian Polymer News. 1999. No. 4 (2), pp. 34–37.
  10. Askadskii A.A. Gradientnye polimernye materialy [Gradient polymer materials]. Moscow: ASV. 2024. 238 p.
  11. Petunova M.D., Askadskii A.A., Luchkina L.V., Goleneva L.M., Kazanceva V.V., Kovriga O.V. Single-stage synthesis and mechanical properties of network polyurethane-isocyanurate polymer materials. Plasticheskie massy. 2010. No. 1, pp. 30–39. (In Russian).
  12. Goleneva L.M., Askadskii A.A., Petunova M.D., Kovriga O.V. Gradient polyurethane-isocyanurate materials based on polypropylene glycol, produced in one stage. Plasticheskie massy. 2008. No. 6, pp. 17–22. (In Russian).
  13. Patent RF 2252947. MPK C08J 5/04. Kompoziciya dlya polucheniya polimernyh konstrukcionnyh materialov na osnove poliizocianuratov [Composition for the production of polymer structural materials based on polyisocyanurates]. Askadskii A.A., Goleneva L.M., Kiseleva T.I Declared 25.06.2003 Published 27.05.2005. (In Russian).
  14. Askadskii A.A., Luchkina L.V., Bychko K.A., Golene- va L.M., Konstantinov K.V. Synthesis, structure and properties of polymeric materials based on olicomeric poly(propylene glycol) and 2,4-tolylene diisocyanat. Vysokomolekulyarnye soedineniya. Seriya A. 2004. No. 46 (4), pp. 569–582. (In Russian).
  15. Luchkina L.V., Petunova M.D., Askadskii A.A., Kazanceva V.V., Afonicheva O.V. Synthesis and mechanical properties of gradient composite polyurethane-isocyanurate polymer materials based on oligooxytetramethylene glycol. Plasticheskie massy. 2008. No. 2, pp. 22–24. (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Compression curves for polymer samples P80 (curve 1) and P120 (curve 2) at a strain rate of 0.187 mm/min

Download (28KB)
3. Fig. 2. Dependence of the yield of the gel fraction after the gelation point. The points superimposed on the curve correspond to the final curing temperatures of polymer mixtures

Download (24KB)
4. Fig. 3. Dependence of the degree of crosslinking on temperature. The points on the curve correspond to the final curing temperatures of polymer mixtures

Download (24KB)
5. Fig. 4. Images of microstructures of the final polymers obtained at different temperatures and durations of the polycyclotrimerization process: a – sample P80; b – sample P120

Download (202KB)
6. Scheme

Download (117KB)
7. Fig. 5. Dependence of deformation on temperature for a sample of the final polymer P80: 1 – experimental thermomechanical curve; 2 – differential form of thermomechanical curve

Download (60KB)
8. Fig. 7. Dependence of deformation on temperature for a sample of the final polymer: a – P100; b – P110: 1 – experimental thermomechanical curve; 2 – differential form of thermomechanical curve

Download (104KB)
9. Fig. 8. Dependence of deformation on temperature for a sample of the final polymer P120: 1 – experimental thermomechanical curve; 2 – differential form of thermomechanical curve

Download (35KB)
10. Fig. 9. Dependence of the elastic modulus of the final polymers on temperature: curve 1 – corresponds to the sample of the final polymer P80; curve 2 – P120

Download (29KB)
11. Fig. 10. Dependence of the forced elasticity limit of final polymers on temperature: curve 1 – corresponds to a sample of the final polymer P80; curve 2 – P120

Download (28KB)

Copyright (c) 2024 ООО РИФ "СТРОЙМАТЕРИАЛЫ"

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies