The Contact Angles of Quartz and Caustic Dolomite Powders after Mechano-Magnetic Treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The determination of the surface free energy (SFE) is currently achieved using an instrumental method, one of which is «sessile drop». The surface free energy of quartz and caustic dolomite powders was defined before and after mechano-magnetic activation in the Vortex layer device. Free surface energy was identified by the well-known models proposed by the Owens–Wendt–Rabel–Kaelble (OWRK) and Van Oss–Chaudhury–Good (VOCG). The determination of the surface free energy (SFE) based on the presented model provides a good convergence: due to experimental assumptions, the deviation in calculation results is 14–16%. It was shown that mechano-magnetic treatment increased the adhesion of quartz powder by 86% (from 73 to 136 J/m2) and caustic dolomite by 217% (from 884 to 2800 J/m2). The mechano-magnetic treatment of study materials can significantly improve the interaction of the liquid with solid. This is evident from comparison of two attributes: the amount of change of specific interphase surface energy of a solid at the boundary with the gas per to change of specific surface of the powder and the change in the cosine of contact wetting angle per to a change in specific surface of the powder. This means the first value that represents the intensity of the interaction between liquids and solids multiplу greater than an integral characteristic of the interaction at the boundary of three phases. Such changes in geometric characteristics and surface properties are effective factors in structure formation control, especially hydration hardening.

Full Text

Restricted Access

About the authors

R. A. Ibragimov

Kazan State University of Architecture and Civil Engineering

Author for correspondence.
Email: rusmag007@yandex.com

Candidate of Sciences (Engineering)

Russian Federation, 1, Zelenaya Street, Kazan, 420043

E. V. Korolev

Saint Petersburg State University of Architecture and Civil Engineering

Email: rusmag007@yandex.com

Doctor of Sciences (Engineering)

Russian Federation, 4, 2nd Krasnoarmeiskaya Street, 190005, St. Petersburg

Yu. V. Bikaeva

Kazan State University of Architecture and Civil Engineering

Email: uliyaevstigneeva@mail.ru

Engineer

Russian Federation, 1, Zelenaya Street, Kazan, 420043

I. S. Larionov

Kazan Federal University

Email: rusmag007@yandex.com

Engineer

Russian Federation, 18, bld. 1, Kremlevskaya street, Kazan, 420111

References

  1. Сивальнева М.Н., Строкова В.В., Нелюбова В.В., Огурцова Ю.Н., Орехова Т.Н., Боцман Л.Н., Нецвет Д.Д. Методы оценки механоактивированного минерального сырья для композиционных вяжущих // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2023. № 9. С. 8–22. doi: 10.34031/2071-7318-2023-8-9-8-22
  2. Sivalneva M.N., Strokova V.V., Nelubova V.V., Ogurtsova Yu.N., Orekhova T.N., Botsman L.N., Netsvet D.D. Methods for assessing mechanically activated mineral raw materials for composite binders. Vestnik of the BSTU named after V.G. Shukhov. 2023. No. 9, pp. 8–22. doi: 10.34031/2071-7318-2023-8-9-8-22 (In Russian).
  3. Ибрагимов Р.А., Королев Е.В. Прочность композитов на основе модифицированного портландцемента, активированного в аппарате вихревого слоя // Промышленное и гражданское строительство. 2021. № 1. С. 35–41. doi: 10.33622/0869-7019.2021.01.35-41
  4. Ibragimov R.A., Korolev E.V. Strength of composites on portland cement modified with carbon nano-tubes and processed in a vortex layer apparatus. Promyshlennoe i grazhdanskoe stroitel’stvo. 2021. No. 1, pp. 35–41. (In Russian). doi: 10.33622/0869-7019.2021.01.35-41
  5. Головин Ю.И. Магнитопластичность твердых тел // Физика твердого тела. 2004. Т. 46. № 5. С. 769–803.
  6. Golovin Yu.I. Magnetoplasticity of solids. Fizika tverdogo tela. 2004. Vol. 46, No. 5, pp. 769–803. (In Russian).
  7. Ibragimov R.A., Korolev E.V. Influence of electromagnetic field on characteristics of crushed materials. Magazine of Civil Engineering. 2022. No. 6 (114). 11408. doi: 10.34910/MCE.114.8
  8. Королев Е.В. Перспективы развития строительного материаловедения // Academia. Архитектура и строительство. 2020. № 3. С. 143–159. doi: 10.22337/2077-9038-2020-3-143-159.
  9. Korolev E.V. Prospects for the development of construction materials of science. Academia. Arkhitektura i stroitel’stvo. 2020. No. 3, pp. 143–159. (In Russian). doi: 10.22337/2077-9038-2020-3-143-159
  10. Нелюбова В.В., Строкова В.В., Данилов В.Е., Айзенштадт А.М. Комплексная оценка активности кремнеземсодержащего сырья как показателя эффективности механоактивации // Обогащение руд. 2022. № 2. С. 17–25. doi: 10.17580/or.2022.02.03
  11. Nelyubova V.V., Strokova V.V., Danilov V.E., Ayzenshtadt A.M. Comprehensive activity analysis of silica-containing raw materials for use in mechanical activation efficiency evaluations. Obogashcheniye rud. 2022. No. 2, pp. 17–25. (In Russian). doi: 10.17580/or.2022.02.03
  12. Королев Е.В., Гришина А.Н., Пустовгар А.П. Поверхностное натяжение в структурообразовании материалов. Значение, расчет и применение // Строительные материалы. 2017. № 1–2. С. 104–108.
  13. Korolev E.V., Grishina A.N., Pustovgar A.P. Surface tension in structure formation of materials. Significance, calculation and application. Stroitel’nye Materialy [Construction Materials]. 2017. No. 1–2, pp. 104–108. (In Russian).
  14. Старостина И.А., Стоянов О.В., Краус Э. Развитие методов смачивания для оценки состояния поверхности. Казань: Издательство КНИТУ, 2019. 140 с.
  15. Starostina I.A., Stoyanov O.V., Kraus E. Razvitie metodov smachivaniya dlya otsenki sostoyaniya poverkhnosti [Evolution of wetting methods for surface assessment]. Kazan: KNRTU-KAI. 2019. 140 p.
  16. Данилов В.Е., Королев Е.В., Айзенштадт А.М. Измерение краевых углов смачивания порошков методом «sessile drop» // Физика и химия обработки материалов. 2020. № 6. С. 75–82. doi: 10.30791/0015-3214-2020-6-75-82
  17. Danilov V.E., Korolev E.V., Ayzenshtadt A.M. Measurement of wetting angles for powders by sessile drop method. Fizika i khimiya obrabotki materialov. 2020. No. 6, pp. 75–82. (In Russian). doi: 10.30791/0015-3214-2020-6-75-82
  18. Айзенштадт А.М., Королев Е.В., Дроздюк Т.А., Данилов В.Е., Фролова М.А. Возможный подход к оценке дисперсионного взаимодействия в порошковых системах // Физика и химия обработки материалов. 2021. № 3. С. 40–48. doi: 10.30791/0015-3214-2021-3-40-48
  19. Ayzenshtadt A.M., Korolev E.V., Drozdyuk T.A., Danilov V.E., Frolova M.A. Possible approach to estimating the dispersion interaction in powder systems. Fizika i khimiya obrabotki materialov. 2021. No. 3, pp. 40–48. (In Russian). doi: 10.30791/0015-3214-2021-3-40-48
  20. Волков В.А. Коллоидная химия. Поверхностная энергия и дисперсные системы. СПб.: Лань, 2015. 627 с.
  21. Volkov V.A. Kolloidnaya khimiya. Poverkhnostnaya energiya i dispersnye sistemy [Colloid chemistry. Surface energy and disperse system]. Saint Petersburg: Lan’. 2015. 627 p.
  22. Данилов В.Е.,Королев Е.В., Айзенштадт А.М., Строкова В.В. Особенности расчета свободной энергии поверхности на основе модели межфазного взаимодействия Оунса–Вендта–Рабеля–Кьельбле // Строительные материалы. 2019. № 11. С. 66–72. doi: 10.31659/0585-430X-2019-776-11-66-72
  23. Danilov V.E., Korolev E.V., Ayzenshtadt A.M., Strokova V.V. Features of the calculation of free energy of the surface based on the model for interfacial interaction of Owens–Wendt–Rabel–Kaelble. Stroitel’nye Materialy [Construction Materials]. 2019. No. 11, pp. 66–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-776-11-66-72
  24. Li Y., Ma X., Chen Y., Kang X., Yang B. Superhydrophobicity mechanism and nanoscale profiling of PDMS-Modified kaolinite nanolayers via Ab Initio-MD simulation and atomic force microscopy study. Langmuir. 2023. Vol. 39 (24), pp. 8548–8558. doi: 10.1021/acs.langmuir.3c00915
  25. Kang X., Li Y., Ma X., Sun H. Fabrication and characterization of high performance superhydrophobic organosilane-coated fly ash composites with novel micro-nano-hierarchy roughness. Journal of Materials Science. 2022. Vol. 57 (29), pp. 13914–13927. doi: 10.1007/s10853-022-07473-5
  26. Zongcheng Yang, Jiangfan Chang, Xiaoyan He, Xiuqin Bai, Chengqing Yuan. Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application. Progress in Organic Coatings. 2023. Vol. 177, pp. 107458. doi: 10.1016/j.porgcoat.2023.107458
  27. Morgan J. Malm, Ganesan Narsimhan, Jozef L. Kokini. Effect of contact surface, plasticized and crosslinked zein films are cast on, on the distribution of dispersive and polar surface energy using the Van Oss method of deconvolution. Journal of Food Engineering. 2019. Vol. 263, pp. 262–271. doi: 10.1016/j.jfoodeng.2019.07.001
  28. Liling Jing, Pengfei Yang, Mark G. Moloney, Zhiliang Zhang, Yongqing Wang, Junying Li, Feng Ma, Jian Li. Synthesis and carbene-insertion preparation of hydrophobic natural polymer materials for rapid and efficient oil/water separation. Applied Surface Science. 2022 Vol. 581. 152394. doi: 10.1016/j.apsusc.2021.152394
  29. Fowkes F.M Attractive forces at interfaces. Industrial and Engineering Chemistry. 1964. Vol. 56, pp. 40–52.
  30. Ибрагимов Р.А., Потапова Л.И., Королев Е.В. Исследование структурообразования активированного наномодифицированного цементного камня методом ИКспектроскопии // Известия КГАСУ. 2021. № 3 (57). С. 41–49. doi: 10.52409/20731523_2021_3_41
  31. Ibragimov R.A., Potapova L.I., Korolev E.V. Investigation of structure formation of activated nanomodified cement stone by IR spectroscopy. Izvestiya KSUAC. 2021. No. 3 (57), pp. 41–49. doi: 10.52409/20731523_2021_3_41
  32. Leon Meredith, Aaron Elbourne, Tamar L. Greaves, Gary Bryant, Saffron J. Bryant. Physico-chemical characterisation of glyceroland ethylene glycol-based deep eutectic solvents. Journal of Molecular Liquids. 2024. Vol. 394. 123777. doi: 10.1016/j.molliq.2023.123777
  33. Шаманина А.В., Айзенштадт А.М. Особенности определения удельной поверхности порошковых кварцсодержащих систем // Вестник МГСУ. 2022. Т. 17. Вып. 1. С. 42–49. doi: 10.22227/1997-0935.2022.1. 42-49
  34. Shamanina A.V., Ayzenshtadt A.M. Features of determining the specific surface area of powdered quartz-containing systems. Vestnik of the MSUCE. 2022. Vol. 17. Iss. 1, pp. 42–49. (In Russian). doi: 10.22227/1997-0935.2022.1. 42-49
  35. Кононова В.М., Шаманина А.В., Данилов В.Е. Механоактивация порошков кварцевого песка. Лучшая студенческая работа 2022: Сборник статей II Международного научно-исследовательского конкурса. 2022. С. 10–15.
  36. Kononova V.M., Shamanina A.V., Danilov V.E. Mechanical activation of quartz sand powders. Best student work 2022: collection of articles of the II International Research Competition. 2022, pp. 10–15. (In Russian).
  37. Alipour Tabrizy V., Denoyel R., Hamouda A.A. Characterization of wettability alteration of calcite, quartz and kaolinite: Surface energy analysis. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2011. Vol. 384, pp. 98–108. doi: 10.1016/j.colsurfa.2011.03.021
  38. Айлер Р. Химия кремнезема / Пер. с англ. Ч. 1. М.: Мир, 1982. 416 с.
  39. Ailer R. Khimiya kremnezema [Chemistry of silicic: translated from English]. Moscow: Mir. 1982. Part. 1. 416 p.
  40. Юзевич В.Н., Коман Б.П. Особенности температурных зависимостей энергетических параметров межфазного взаимодействия в системах кристаллический кварц–Pb и (NaCl, KCl)–Pb // Физика твердого тела. 2014. Т. 56. № 3. С. 583–588.
  41. Juzevych V.N., Coman B.P. Specific features of temperature dependences of energy parameters of interfacial interactions in crystalline quartz–Pb and (NaCl, KCl)–Pb systems. Fizika tverdogo tela. 2014. Vol. 56. No. 3, pp. 583–588. (In Russian).
  42. Jörg Weissmüller. Surface free energy density, surface tension and surface stress of solid–fluid interfaces. In book: Encyclopedia of Solid-Liquid Interfaces. 2024, pp. 300–307. doi: 10.1016/B978-0-323-85669-0.00127-6
  43. Changsuk Yun, Thanh Duc Dinh, Seongpil Hwang. Chemical electrification at solid/liquid/air interface by surface dipole of self-assembled monolayer and harvesting energy of moving water. Journal of Colloid and Interface Science. 2022. Vol. 615, pp. 59–68. doi: 10.1016/j.jcis.2022.01.114.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Particle-size distribution: a – quartz sand; b – caustic dolomite

Download (112KB)
3. Fig. 2. Photos of wetting quartz sand by test liquids: a, b – ethylene glycol and glycerin on the surface of the powder before activation; c, d – ethylene glycol and glycerin on the surface of the powder after activation

Download (65KB)

Copyright (c) 2024 ООО РИФ "СТРОЙМАТЕРИАЛЫ"

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies