= ФИЗИЧЕСКАЯ ХИМИЯ =

УДК 536.4:66.040.46

СТРУКТУРА И ТЕРМИЧЕСКИЕ СВОЙСТВА ТmFe₂O₄ ПРИ РАЗЛИЧНЫХ ЗНАЧЕНИЯХ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ КИСЛОРОДА

Л. Б. Ведмидь^{1,2,*}, О. М. Федорова¹, В. М. Димитров¹, член-корреспондент РАН В. Ф. Балакирев

Поступило 14.06.2018 г.

Исследован диапазон стабильности TmFe₂O₄ при температуре 1090 °C в условиях пониженного давления кислорода в газовой фазе и по экспериментальным данным, полученным при диссоциации соединения в температурном интервале 750–900 °C, вычислены его термодинамические характеристики. Определены структурные превращения в температурном диапазоне от -140 до 140 °C, связанные с зарядовым упорядочением в этом соединении.

Ключевые слова: феррит тулия, термодинамические свойства, структура, зарядовое упорядочение.

DOI: https://doi.org/10.31857/S0869-56524842177-180

Ферриты редкоземельных элементов с переменной валентностью ионов железа обладают уникальными физическими свойствами и используются в качестве функциональных материалов. Они являются мультиферроиками [1], проявляют магнитоэлектрический эффект [2], магнитокалорический эффект при температурах ниже температуры Нееля [3]. Ферриты типа $LnFe_2O_4$ (Ln — редкоземельный элемент) с переменной валентностью ионов синтезируют в атмосфере, в которой парциальное давление кислорода меньше его значения на воздухе. Эти вещества обладают широкой областью гомогенности по кислороду, что дает возможность варьировать их свойства в зависимости от содержания кислорода в структуре. По вопросам синтеза $LnFe_2O_4$ в литературе отсутствуют систематические сведения: в исследованиях используются методики получения оксидных материалов в газовых смесях системы Н–С–О, например Н₂+СО+СО₂ [4]. При этом необходимо учитывать кинетическую составляющую зависимости парциального давления кислорода в газовой смеси от температуры и опасность химического взаимодействия оксидного материала с компонентами реакционной газовой атмосферы. Это затрудняет получение соединения определённого состава. Сложность синтеза и

Уральского отделения Российской Академии наук,

зависимость свойств от кислородной нестехиометрии осложняют построение низкокислородных участков *P*-*T*-*x* диаграммсистем Ln-Fe-O, включающих соединение $LnFe_2O_4$. При комнатной температуре ферриты $LnFe_2O_4$ (Ln = Tm, Yb, Lu) представляют собой оксиды со смешанной валентностью ионов железа (Fe³⁺ и Fe²⁺), обладающие ромбоэдрической кристаллической структурой с пространственной группой R3m [5]. В публикациях [5, 6] имеются сведения, что в этих материалах может наблюдаться зарядовое упорядочение в одном слое бипирамид, образованных ионами железа и кислорода, концентрируются трёхзарядные ионы железа, а в другом — двухзарядные. Эта модель зарядового упорядочения допускает возможное сегнетоэлектрическое упорядочение между последовательными бислоями Fe и даёт объяснение пироэлектрического эффекта, наблюдаемого ниже температуры зарядового упорядочения [6]. Температуры структурных превращений и зарядового упорядочения отличаются для каждого редкоземельного элемента, входящего в состав соединения. Наиболее изученным соединением этого семейства $LnFe_2O_4$ (Ln = Tm, Yb, Lu) является LuFe₂O₄, сведения о структурных свойствах TmFe₂O₄ немногочисленны, поэтому мы синтезировали и провели исследование структуры соединения $TmFe_2O_4$ в широком интервале температур и давлений кислорода.

Впервые при синтезе $TmFe_2O_4$ нами использованы новые экспериментальные методики для создания, измерения и регулирования равновесного парциального давления в газовой фазе [7]. Впервые определен диапазон стабильности

¹Институт металлургии

Екатеринбург

²Уральский федеральный университет им. Б.Н. Ельцина,

Екатеринбург

^{*}E-mail: elarisa100@mail.ru

 $TmFe_2O_4$ при температуре 1090 °C в условиях пониженного давления кислорода в газовой фазе и по экспериментальным данным, полученным при диссоциации соединения в температурном интервале 750—900 °C, вычислены его термодинамические характеристики. Впервые установлены температурные интервалы структурных превращений, связанных с зарядовым упорядочением в этом соединении.

Гомогенный образец соединения TmFe₂O₄ синтезирован в установке, описанной в [8] из предварительно осушенных оксидов Fe₂O₃ (чистоты ≥ 98%) и Tm₂O₃ (чистоты 99,9%). Использование смеси исходных оксидов в стехиометрической пропорции (Fe₂O₃ : Tm₂O₃ = 1,00:0,50) приводит к получению TmFe₂O₄ и незначительного количества примеси в виде оксида тулия. Введенная нами корректировка состава шихты Fe₂O₃: Tm₂O₃=1,00 : 0,47 позволяет получить однофазный продукт. Термическая обработка подготовленной смеси проводилась в течение 36 ч при давлении $P_{O_2} = 10^{-12,8}$ атм и температуре 1090 °С. Необходимо отметить, что это максимально возможная температура в используемой установке, так как в качестве материала реактора для синтеза применён кварц. В качестве синтез-газа использована смесь, состоящая из аргона и кислорода. Восстановительные условия обеспечиваются поддержанием определённого значения давления кислорода электрохимическим методом. Технические особенности синтеза описаны в [9]. Соединение обладает ромбоэдрической структурой, пространственная группа $R\vec{3}m$, параметры элементарной ячейки a = 3,4729(2) Å, c = 24,9424(8) Å. Для определения интервала стабильности TmFe₂O₄ при температуре 1090 °C изменяли величину парциального давления кислорода в газовой фазе. Фазовый состав закалённых образцов исследовали рентгенографическим методом на дифрактометре XRD-7000 (Shimadzu), (Си K_{α} -излучение), в диапазоне углов 20° < θ < 80°, с шагом 0,2°. Снижение давления кислорода до $P_{0} = 10^{-13,1}$ атм приводит к частичному восстановлению исходного оксида и появлению на дифрактограммах рефлексов фаз Tm₂O₃ и FeO. Наличие окисленных фаз Fe₃O₄ и TmFeO₃ наряду с исходной, фиксируется РФА при достижении давления величины $P_{O_2} = 10^{-12,3}$ атм. Полученные нами экспериментальные данные позволяют зафиксировать граничные условия существования соединения TmFe₂O₄ в условиях пониженного давления кислорода при фиксировании температуры термической обработки.

Рис. 1. Температурная зависимость параметров элементарной ячейки $TmFe_2O_4$.

Рис. 2. Температурная зависимость длин связей Tm-O2, Fe-O1 (апикальная), Fe-O2 (апикальная) соединения $TmFe_2O_4$. Ошибка в определении длин связей равна величине символа.

Для исследования особенностей структурных превращений в TmFe₂O₄ была изучена температурная зависимость параметров его элементарной ячейки с использованием низкотемпературной приставки ТТК-450 (фирмы Anton Paar). Съёмка проводилась в интервале температур от -140 до 140 °С при давлении кислорода $P_{\Omega_2} = 10^{-2}$ атм. Полнопрофильный рентгеноструктурный анализ выполнен с использованием программного комплекса GSAS [10], в качестве исходной использовалась модель, описанная в работе [11]. Зависимость параметров элементарной ячейки TmFe₂O₄ от температуры приведена на рис. 1. Параметр а демонстрирует постоянный рост во всём изученном температурном интервале, что объясняется обычным тепловым расширением. Параметр с уменьшается довольно резко в интервале

Рис. 3. Кривая ДСК-измерения соединения TmFe₂O₄.

температур от -140 до -80 °C, затем наблюдается его увеличение до температуры -20 °C, после этого он плавно снижается до температуры 140 °C. Такой скачок параметра *с* можно объяснить происходящим в этом диапазоне изменением длин связей Tm-O2 и Fe-O1, Fe-O2 (рис. 2).

Структура TmFe₂O₄ содержит перпендикулярные оси Z слои октаэдров TmO₆, между которыми расположены слои сдвоенных тригональных бипирамид FeO₅ с двух- и трёхвалентными катионами Fe [12]. В интервале температур от -140 до -80 °C происходит увеличение длины связи Tm-O2, и уменьшение апикальных длин связей Fe-O1(ап.) и Fe-O2(ап.), которое вызывает сжатие бипирамиды FeO₅. Поскольку сжатие бипирамид происходит на большую величину (рис. 2), чем растяжение связи Tm-O2, то происходит уменьшение параметра с всего кристалла. Этот процесс вызывает эндотермический пик на кривой ДСК (дифференциально-сканирующая калориметрия) (рис. 3) в интервале температур от -90 до -60 °С. При дальнейшем повышении температуры до -20 °С происходит небольшое увеличение длин связей Fe-O1 (ап.) и Fe-O2 (ап.) и уменьшение длины связи Tm-O2, что приводит к росту параметра *с* (рис. 1).

После –20 °С длины связей Fe–O1 (ап.) и Fe–O2 (ап.) начинают уменьшаться, что свидетельствует о сжатии бипирамид FeO₅, уменьшая параметр *с* в интервале температур от –20 до +140 °С. На кривой ДСК (рис. 3) в интервале температур от –25 до +10 °С наблюдается эндоэффект, который объясняется данными структурными изменениями. Эта температура согласуется с данными [13] о зарядовом упорядочении в TmFe₂O₄ при температурах ниже +25 °С. Совпадение температурного интервала зарядового упорядочения и резкого уменьшения параметра

Рис. 4. Температурная зависимость равновесного парциального давления кислорода при диссоциации соединения TmFe_2O_4 , 1 — наши данные, 2 — данные [4].

 $c \operatorname{TmFe_2O_4}$ может свидетельствовать о связи этих двух процессов.

Изучение термодинамической устойчивости TmFe_2O_4 проведено статическим методом в вакуумной циркуляционной установке [14]. В диапазоне температур 750–900 °С соединение диссоциирует при понижении давления кислорода в газовой атмосфере в интервале $P_{\text{O}_2} = (10^{-20}) \div (10^{-16.6})$ атм. согласно реакции (1).

$$\text{TmFe}_2\text{O}_4 \rightarrow \frac{1}{2}\text{Tm}_2\text{O}_3 + 2\text{FeO} + \frac{1}{4}\text{O}_2.$$
 (1)

Измеренные значения равновесного давления кислорода представлены на рис. 4 (линия *1*) в сравнении с данными [4]. Из полученных данных рассчитаны значения изменения свободной энергии Гиббса, которое представлено выражением

$$\Delta G_T^0 = 132,56 - 0,0334T \pm 0,02$$
 кДж/моль. (2)

На основании полученных из уравнения (2) значений ΔH_T^0 и ΔS_T^0 для реакции (1) и литератур-

ных данных значений изменения термодинамических функций для реакции образования простых оксидов вычислены изменения стандартных энтальпии и энтропии образования соединения TmFe₂O₄ из элементов:

$$\Delta H_T^0 = -1614,44$$
 кДж/моль,
 $\Delta S_T^0 = 255,52$ Дж/моль · К,

которые могут служить справочным материалом для работ по химической термодинамике.

Таким образом, в работе получены новые данные о термических свойствах соединения TmFe_2O_4 в условиях пониженного давления кислорода в широком температурном диапазоне и исследованы структурные превращения в температурном диапазоне от -140 до 140 °C. Отрицательный валах температур от −140 до −80 °С и от −20 °С до 140 °С объяснён сжатием бипирамид FeO₅.

Работа поддержана ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы", соглашение № 14.578.21.0200 по теме "Разработка технологии производства керамических узлов и деталей методом селективного лазерного сплавления с использованием инновационных методов диагностики процессов и полученных изделий" (уникальный идентификатор ПНИЭР RFMEFI57816X0200).

СПИСОК ЛИТЕРАТУРЫ

- 1. Pyatakov A.P., Zvezdin A.K. // Phys. Uspekhi. 2012. V. 55. P. 557–581.
- 2. Kim J., Lee B.W. // J. Magnetics. 2010. T. 15. № 1. C. 29-31.
- 3. Kambe T., Fukada Y., Kano J., Nagata T., Okasaki H., Yokoya T., Wakimoto S., Kakurai K., Ikeda N. // Phys. Rev. Lett. 2013. V. 110. 117602.
- V. 13. P. 176-181.

- коэффициент термического расширения в интер- 5. Ikeda N., Ohsumi H., Ohwada K., Ishii K., Inami T., Kakurai K., Murakami Y., Yoshii K., Mori S., Horibe Y., Kito H. // Nature. 2005. V. 436. P. 1136.
 - 6. Ikeda N., Kohn K., Myouga N., Takahashi E., Kiton H., Takekawa S. // J. Phys. Soc. Jap. 2000. V. 69. P. 1526.
 - 7. Янкин А.М., Ведмидь Л.Б. Способ формирования газовой смеси для анализа и обработки материалов при переменном давлении. Пат. РФ. № 2548949. M., 2015.
 - 8. Ведмидь Л.Б., Янкин А.М., Козин В.М., Федорова О.М. // ЖФХ. 2017. Т. 91. № 8. С. 1273-1276.
 - 9. Ведмидь Л.Б., Димитров В.М., Федорова О.М. // ДАН. 2018. Т. 478. № 6. С. 652-656.
 - 10. 10. Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS). LANSCE, MS-H805. Los Alamos: Los Alamos Nat. Lab. 1986. NM 87545.
 - 11. Kato K., Kawada I., Kimizuka N., Katsura T. // Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 1975. V. 141. P. 314.
 - 12. Безносиков Б.В., Александров К.С. // Перспективные материалы. 2007. № 1. С. 46-49.
 - 13. Blasco J., Lafuerza S., Garsia J., Subias G. // Phys. Rev. B. 2014. V. 90. 094119.
- 4. Кітігика N., Katsura T. // J. Solid State Chem. 1975. 14. Янкин А.М., Балакирев В.Ф., Ведмидь Л.Б., Федорова О.М. // ЖФХ. 2003. Т. 77. № 11. С. 2108-2111.

THE STRUCTURE AND THERMAL PROPERTIES OF TmFe₂O₄ AT DIFFERENT VALUES OF TEMPERATURE AND OXYGEN PRESSURE

L. B. Vedmid, O. M. Fedorova, V. M. Dimitrov, Corresponding Member of the RAS V. F. Balakirev

Received June 14, 2018

The stability range of TmFe2O4 has been studied under conditions of low oxygen pressure in the gas phase at the temperature of 1090 °C. The thermodynamic characteristics of thulium ferrite are calculated from experimental data obtained during dissociation of the compound in the temperature range of 750–900 °C. Structural transformations are determined in the temperature range from -140 to 140 °C. They are associated with charge ordering in this compound.

Keywords: thulium ferrite, thermodynamic properties, structure, charge ordering.