— ХИМИЯ

УДК 541.11

СИНТЕЗ И САМОАССОЦИАЦИЯ АМФИФИЛЬНЫХ ДИБЛОК-СОПОЛИМЕРОВ 2,3,4,5,6-ПЕНТАФТОРСТИРОЛА

К. Е. Чекуров*, А. И. Барабанова, И. В. Благодатских, Б. В. Локшин,

А. С. Перегудов, С. С. Абрамчук, академик РАН А. Р. Хохлов

Поступило 03.10.2018 г.

Амфифильные диблок-сополимеры (ДС) 2,3,4,5,6-пентафторстирола и 2-гидроксиэтилметакрилата впервые синтезированы двухстадийной радикальной полимеризацией с обратимой передачей цепи по механизму присоединения—фрагментации. Морфология плёнок из ДС, имеющих близкий к эквимолекулярному состав, исследована просвечивающей электронной микроскопией. Наблюдаемое микрофазовое расслоение с образованием сферических нанодоменов является нетипичным для эквимолекулярных ДС и связано, вероятно, с образованием водородных связей между гидроксильными и карбонильными группами (ОН … ОН и С=О … НО) в поли-2-гидроксиэтилметакрилатных блоках. Очевидно, именно способность ДС к самоорганизации является причиной формирования тканевых покрытий с низкой поверхностной энергией ($\gamma = 11.9 \text{ мДж/м}^2$) и относительно высокими контактными углами смачивания водой ($\theta^{H_2O} = 120^\circ \pm 6^\circ$) и дийодметаном ($\theta^{CH_2I_2} = 93^\circ \pm 2^\circ$).

Ключевые слова: контролируемая радикальная полимеризация, 2,3,4,5,6-пентафторстирол, диблок-сополимеры.

DOI: https://doi.org/10.31857/S0869-56524844431-435

Фторсодержащие полимеры в последнее время привлекают внимание исследователей не только благодаря их термической и химической стойкости, устойчивостью к износу и старению, но и плохой смачиваемостью в водных и органических средах [1-8]. Низкая поверхностная энергия и высокие значения углов смачивания фторсодержащих полимеров делают их весьма перспективными для создания ультрагидрофобных покрытий [2-8]. Например, ультрагидрофобные тканевые покрытия с углами смачивания водой, превышающими 150°, были получены из статистических сополимеров 2-(перфтороктил)этилметакрилата (ПФО-МА) и 2-(перфторгексил)этилметакрилата (ПФГ-МА) с 2-гидроксипропилметакрилатом (ГПМА) [7, 8]. Звенья ПФОМА и ПФГМА придают покрытиям ультрагидрофобные свойства, однако из-за высокой токсичности продуктов разложения полимеров их производство и использование уже ограничено в ряде стран, поэтому задача создания гидрофобных покрытий из полимеров с меньшим количеством атомов фтора является актуальной. Гидроксильные группы звеньев ГПМА обеспечивают ковалентное связывание сополимеров с тканью и тем самым придают покрытиям

способность не смываться водой в течение довольно длительного времени.

Адгезию фторированных сополимеров с тканью можно существенно повысить, если вместо статистических сополимеров использовать диблок-сополимеры (ДС) такого же состава. В отличие от нерегулярного распределения звеньев ОН-групп в статистическом сополимере, в ДС ОН-группы гидроксилсодержащих сомономеров расположены локально. Можно ожидать, что увеличение локальной концентрации ОН-групп в ДС повысит прочность связи покрытия с тканью. Помимо высокой адгезии к подложке, амфифильные ДС в результате микрофазового расслоения способны к эффективной самоорганизации с формированием покрытий с низкой поверхностной энергией и низким гистерезисом контактных углов как с полярными, так и с неполярными жидкостями [6, 7]. При этом в качестве фторированных сомономеров можно использовать соединения с меньшим числом атомов фтора.

Цель настоящей работы состояла в получении амфифильных фторированных ДС двухстадийной радикальной полимеризацией с обратимой передачей цепи (ОПЦ) по механизму присоединения—фрагментации 2,3,4,5,6-пентафторстирола (ПФС) и 2-гидроксиэтилметакрилата (ГЭМА), в исследовании их способности к самоорганизации в тонких плёнках, а также в

Институт элементоорганических соединений Российской Академии наук, Москва

^{*}E-mail: kirillswim@rambler.ru

сравнении репеллентных свойств тканевых покрытий из полипентафторстирола (ППФС), полигидроксиэтилметакрилата (ПГЭМА) и ДС из ПФС и ГЭМА.

Для нахождения оптимальных условий синтеза ДС сначала была исследована ОПЦ-полимеризация ПФС в присутствии 2-циано-2-пропил-дитиобензоата (ЦПТБ) в качестве агента передачи цепи (ОПЦ-агент). ОПЦ-полимеризацию ПФС ([ПФС] = 2,0 моль/л), инициированную ДАК ([ДАК] = 2,7 · 10⁻² моль/л), проводили в ДМФА при мольном соотношении [ЦПТБ] / [ДАК] = 1,9 при 60°С (табл. 1).

Синтезированные ППФС характеризуются симметричными и унимодальными кривыми MMP (рис. 1). Сдвиг кривых MMP ППФС с ростом конверсии мономера q в сторону более высоких молекулярных масс (MM) и близкие к единице значения M_w/M_n указывают на контролируемый характер полимеризации ПФС в выбранных условиях. Таким образом, ОПЦ-полимеризацией ПФС в присутствии ЦПТБ в ДМФА можно синтезировать достаточно высокомолекулярные ППФС с узким MMP.

Амфифильные ДС ПФС и ГЭМА впервые получены двухстадийной ОПЦ-полимеризацией в ДМФА. На первой стадии синтези-

Рис. 1. Сравнение кривых ММР ППФС: П1 (*1*), П2 (*2*), П3 (*3*) и П4 (*4*).

ровали гидрофильный ПГЭМА-ОПЦ-агент с $M_n(\Gamma\Pi X) = 23,5 \cdot 10^3$ и $M_w/M_n = 1,23$ ОПЦ полимеризацией ГЭМА в ДМФА в присутствии ДАК ([ДАК] = 8,0 · 10⁻³ моль/л) при мольном соотношении [ЦПТБ] / [ДАК] = 2,5 при 60°С. На второй стадии ДС получали ОПЦ-полимеризацией ПФС ([ПФС] = 2 моль/л) в присутствии

Образец	[ЦПТБ] [ДАК]	Время, ч	$q, \%^{1)}$				
				Teop. ²⁾	ПМР ³⁾	ΓΠХ ⁴⁾	$\frac{M_{\rm w}}{M_{\rm n}}^{4)}$
	0	24	53	_	_	21	1,97
Π1	1,9	8	12	9,0	11,0	11,9	1,17
П2	1,9	10	19	14,1	13,5	15,1	1,23
П3	1,9	18	33	24,3	19,6	25,4	1,33
Π4	1,9	24	46,5	34,3	25,0	29,3	1,41

Таблица 1. Условия полимеризации ПФС и ММ характеристики ППФС

¹⁾ *q* определяли гравиметрически.

²⁾ Теоретические значения $M_{\rm n}$ рассчитывали, полагая, что одна молекула ЦПТБ приводит к контролируемому росту одной полимерной цепи, по уравнению $M_{\rm n} = M_{\rm ЦПТБ} + \frac{q [\Pi \Phi C]_0 M_{\Pi \Phi C}}{[\Pi \Pi T B]_0}$, где $M_{\rm ЦПТБ}$ и $M_{\Pi \Phi C}$ – молекулярные массы ЦПТБ

и ПФС, [ЦПТБ]₀ и [ПФС]₀ — их начальные концентрации, *q* — конверсия ПФС. ³⁾ *M*_n определена из соотношения интегральных интенсивностей сигналов — СН-группы основной полимерной цепи при 2,35 и 2,80 м.д. и сигналов протонов фенильной группы ЦПТБ при 7,35 и 7,75 м.д.: $M_n = \frac{H_C M_{\Pi\Phi C}}{5H_F}$, где H_C и H_F — ин-

5*H_F* 5*H_F* 5*H_F* тегральные интенсивности сигналов — CH-группы основной полимерной цепи ΠΠΦС и сигналов протонов фенильной группы ЦПТБ, *M*_{ПФС} — молекулярная масса ПФС. При этом предполагали, что все полимерные цепи содержат

концевые фенильные группы ОПЦ-агента. ⁴⁾ Условия эксперимента: прибор — Agilent 1200 с рефрактометрическим детектором, колонка — PLmixC, элюент — ТГФ, температура 25°C и скорость 1,0 мл/мин. Калибровка выполнена по полистирольным стандартам.

Рис. 2. Сравнение кривых ММР ПГЭМА $(M_n = 23, 5 \cdot 10^3, M_w/M_n = 1, 23)$ (1) и продуктов полимеризации ПФС в присутствии ПГЭМА: C1 $(M_n = 36, 6 \cdot 10^3, M_w/M_n = 1, 30)$ (2) и C2 $(M_n = 39, 3 \cdot 10^3, M_w/M_n = 1, 26)$ (3).

ПГЭМА-ОПЦ-агента с концевой дитиобензоатной группой и ДАК ([ДАК] = $1 \cdot 10^{-3}$ моль/л) при постоянном мольном соотношении [ПГЭМА] / [ДАК] = 4 в ДМФА при 60°С (табл. 2). На рис. 2 представлены кривые ММР исходного ПГЭМА-ОПЦ-агента и ДС, состав которых по данным элементного анализа (ЭА) близок к эквимолекулярному. Кривые ММР для ДС являются унимодальными и сдвигаются в сторону более высоких молекулярных масс. Экспериментальные значения M_n (ЭА) близки к теоретическим величинам. Расхождение значений $M_n(\Gamma\Pi X)$ и M_n (ЭА) обусловлено тем, что $\Gamma\Pi X$ не является абсолютным методом и полученные относительные ММ отражают гидродинамические размеры макромолекул, зависящие от их конформации. Полидисперсность полученных ДС $M_w/M_n \leq 1,30$ характерна для ОПЦ-полимеризации.

Поскольку синтезированные ДС состоят из полимерных блоков разной природы: гидрофобного ППФС-блока и гидрофильного ПГЭМА-блока, то в растворах и расплавах они могут самоорганизоваться в микрофазы нанометрового размера. Морфологию плёнок толщиной 700 мкм из ДС, содержащих 52 и 54 мол.% звеньев ПФС, полученных нанесением из 5 мас.%-ных растворов сополимеров в ДМФА на гидрофобизированную подложку с последующим отжигом в вакууме, исследовали методом просвечивающей электронной микроскопии (ПЭМ). Плёнки имеют практически одинаковую морфологию: на ПЭМ-изображениях видны домены, имеющие близкую к сферической форму с диаметром сфер от 24 до 40 нм. На рис. 3 показано ПЭМ-изображение плёнки из С2.

Следует отметить, что морфология со сферическими доменами нетипична для плёнок из эквимолекулярных ДС и для выявления причин возникновения такой структуры необходимы

Образец	Время, ч	$q,\%^{1)}$	$M_{\rm n} \cdot 10^{-3}$			$M_{\rm w}$ ³⁾	Состав ДС, мол. % ⁴⁾	
			Teop ²⁾	ГПХ ³⁾	ЭА ⁵⁾	$\overline{M_{n}}$	ГЭМА	ПФС
С1 ПГЭМА ₁₈₀ ППФС ₁₉₅	24	28,6	51,2	36,6	61,3	1,30	48	52
С2 ПГЭМА ₁₈₀ ППФС ₂₁₁	28	33,2	55,7	39,3	64,4	1,26	46	54

Таблица 2. Условия полимеризации ПФС и ММ характеристики ДС

¹⁾ *q* определяли гравиметрически.

²⁾ Теоретические значения $M_{\rm n}$ рассчитывали, полагая, что одна молекула ПГЭМА-ОПЦ-агента приводит к контролируемому росту одной макромолекулы ДС, по уравнению $M_{\rm n} = M_{\Pi\Gamma \Im MA} + \frac{q \left[\Pi \Phi C\right]_0 M_{\Pi \Phi C}}{\left[\Pi \Gamma \Im MA\right]_0}$, где $M_{\Pi\Gamma \Im MA}$ и $M_{\Pi \Phi C}$ — молеку-

лярные массы ПГЭМА и ПФС, [ПГЭМА]₀ и [ПФС]₀ — их начальные концентрации, q — конверсия ПФС.

³⁾ Условия эксперимента: прибор — Agilent 1200 с рефрактометрическим детектором, колонка — G-gel [12, 13], элюент — смесь ТГФ : 0,03 M LiBr в ДМФА (50 : 50 об.%), температура 30°С и скорость 0,5 мл/мин. Калибровка выполнена по полистирольным стандартам.

⁴⁾ Состав ДС определяли ЭА.

⁵⁾ $M_{\rm n}$ определяли, зная $M_{\rm n}$ ПГЭМА-ОПЦ-агента ($M_{\rm n} = 23,5\cdot10^3$) и состав ДС, по уравнению $M_{\rm n} = M_{\rm ПГЭМА} + \frac{N_{\rm ПФС}}{N_{\rm ПФС} + N_{\rm ГЭМА}} \cdot M_{\rm ПФС}$,

где $M_{\Pi\Gamma\Im MA}$ и $M_{\Pi\Phi C}$ — молекулярные массы ПГЭМА и ПФС, $N_{\Pi\Phi C}$ и $N_{\Gamma\Im MA}$ — число звеньев ПФС и ГЭМА в ДС.

ДОКЛАДЫ АКАДЕМИИ НАУК том 484 № 4 2019

Рис. 3. ПЭМ-изображения плёнки из С2. Фазе ППФС соответствуют более тёмные участки, а фазе ПГЭМА — более светлые области.

дополнительные исследования. Можно предположить, что определяющую роль в этом явлении играет образование водородных связей между гидроксильными и карбонильными группами (OH ··· OH и C=O ··· HO) [9, 10] в микрофазе, сформированной ПГЭМА-блоками. Существование водородных связей между двумя гидроксильными группами (ОН … ОН) и между гидроксильной и карбонильной группами (C=O ··· HO) ПГЭМА-блоков ДС подтверждают данные ИК-спектроскопии (рис. 4). На рис. 4 показаны фрагменты ИК-спектров ПГЭМА и С2 в области валентных колебаний НО-связь и О=С-групп. Две перекрывающиеся полосы при 1730 и 1704 см⁻¹ относятся к валентным колебаниям свободных С=О-групп (не связанных водородными связями) и С=О-групп, связанных водородными связями с ОН-группами (C=O ··· HO), соответственно [9, 10]. Широкая полоса валентных колебаний ОН-групп наблюдается в интервале от 3536 до 3325 см⁻¹ как для ПГЭМА, так и для С2 и характеризует валентные колебания ОН-групп, связанные водородными связями с карбонильной группой (3536 см⁻¹), обертон валентных колебаний C=O (3432 см⁻¹) и агрегаты ОН-групп (··· НО ··· НО ··· НО ···) (3325 см⁻¹).

Репеллентные свойства образцов нейлоновой ткани, обработанной ППФС, ПГЭМА и С2, приготовленных по методике, описанной в [7, 8], оценивали по статическому краевому углу

Рис. 4. Фрагмент ИК-спектров ПГЭМА (1) и С2 (2) в области валентных колебаний О=С-групп и ОН-групп.

смачивания водой (θ^{H_2O}) и дийодметаном ($\theta^{CH_2I_2}$) на приборе Kruss DSA 25. Образцы необработанной ткани и ткани с покрытием из ПГЭМА прекрасно впитывают воду и ДИ за счёт капиллярных эффектов. После нанесения ППФС и С2 образцы становятся гидрофобными, причем величина θ^{H₂O} ткани, обработанной C2, составляет $120^{\circ} \pm 6^{\circ}$, что почти на 20° выше, чем θ^{H_2O} для ткани, пропитанной ППФС ($\theta^{H_2O} = 102^\circ \pm 2^\circ$), несмотря на то, что ДС содержит 50 мол.% звеньев гидрофильного ГЭМА. Статические контактные углы смачивания ДИ (объём капли 1,5 мкл) для ткани, обработанной ППФС и С2, составляют $80^{\circ} \pm 2^{\circ}$ и $93^{\circ} \pm 2^{\circ}$ соответственно. Значения удельной свободной поверхностной энергии у, рассчитанные по уравнению Оуэнса-Вендта [11], составляют 18,1 и 11,9 мДж/м² для ППФС и С2 соответственно. Наблюдаемое улучшение энергетических характеристик поверхности плёнок из ЛС по сравнению с соответствующими параметрами для плёнок из ППФС может быть связано как с индуцированной кривизной поверхности, так и с перпендикулярной ориентацией блоков ППФС к поверхности подложки в результате самоорганизации амфифильных ДС [5, 6].

Источник финансирования. Исследование выполнено за счёт гранта Российского научного фонда (проект № 17–13–01359) в Институте элементоорганических соединений им. А.Н. Несмеянова Российской Академии наук (ИНЭОС РАН). Строение полученных соединений изучено с использованием оборудования Центра исследования строения молекул ИНЭОС РАН.

СПИСОК ЛИТЕРАТУРЫ

- Li X., Andruzzi I., Chiellini E., Galli G., Ober C.K., Hexemer A., Kramer E.J., Fischer D.A. // Macromolecules. 2002. V. 35. P. 8078–8087.
- Borkar S., Jankova K., Siesler H.W., Hvilsted S. // Macromolecules. 2004. V. 37. P. 788–794.
- Das S., Kumar S., Samal S.K., Mohanty S., Nayak S. K. // Ind. Eng. Chem. Res. 2018. V. 57. № 8. P. 2727–2745.
- 4. *Airoudj A., Gall F.B.-L., Roucoules V. //* J. Phys. Chem. C. 2016. V. 120. № 51. P. 29 162–29 172.
- Szczepanski C. R., Darmanin T., Guittard F. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 5. P. 3063–3071.
- Yamaguchi H., Kikuchi M., Kobayashi M., Ogawa H., Masunaga H., Sakata O., Takahara A. // Macromolecules. 2012. V. 45. P. 1509–1516.
- Kondratenko M.S., Anisenko S.A., Elmanovich I.V., Stakhanov A.I., Gallyamov M.O., Khokhlov A.R. // Polym. Sci. A. 2018. V. 60. № 4. P. 451–458.

- Zefirov V.V., Lubimtsev N.A., Stakhanov A.I., Elmanovich I.V., Kondratenko M.S., Lokshin B.V., Gallyamov M.O., Khokhlov A.R. // J. Supercrit. Fluids. 2018. V. 133. № 1. P. 30–37.
- Morita S., Kitagawa K., Ozaki Y. // Vib. Spectrosc. 2009. V. 51. P. 28–33.
- 10. Morita S. // Frontiers in Chem. 2014. V. 2. P. 1-5.
- Owens D.K., Wendt R.C. // J. Appl. Polym. Sci. 1969.
 V. 13. P. 1741–1747.
- Tennikova T.B., Horak D., Svec F., Kolar J., Coupek J., Trushin A., Maltzev V.G., Belenki B.G. // J. Chromatigr. A. 1988. V. 435. P. 357–362.
- Фоменков А.И., Благодатских И.В., Пономарев Ив.И., Волкова Ю.А., Пономарев И.И., Хохлов А.Р. // Высокомолекуляр. соединения. Б. 2009. Т. 51. № 5. С. 874–882.

SYNTHESIS AND SELF-ASSEMBLING AMPHIPHILIC DIBLOCK-COPOLYMERS OF (2,3,4,5,6)-PENTAFLUOROSTYRENE

K. E. Chekurov, A. I. Barabanova, I. V. Blagodatskikh, B. V. Lokshin, A. S. Peregudov, S. S. Abramchuk, Academician of the RAS A. R. Khokhlov

Received October 3, 2018

Amphiphilic diblock-copolymers (DC) of (2,3,4,5,6)-pentafluorostyrene and 2-hydroxyethyl methacrylate were prepared for the first time by two-step reversible addition–fragmentation chain transfer (RAFT) polymerization. The morphology of films of diblock-copolymers that have a composition close to equimolar was studied by transmission electron microscopy. The observed microphase separation and formation of spherical nanodomains is not typical for equimolar diblock-copolymers and seems to result from hydrogen bonding between the hydroxyl and carbonyl groups (OH…OH and C=O…HO) in poly(2-hydroxyethyl methacrylate) blocks. Obviously, it is the ability of diblock-copolymers to self-organization is the cause of formation of fabric coatings with low surface energy ($\gamma = 11.9 \text{ mJ/m}^2$) and relatively large water contact angles ($\theta^{H_2O} = 120\pm6^\circ$) and diiodmetane ($\theta^{CH_2I_2} = 93\pm2^\circ$).

Keywords: controlled radical polymerization, 2,3,4,5,6-pentafluorostyrene, diblock-copolymers.