——— ГЕОХИМИЯ =

УДК 548.0+553.876+661.693.2+542.91

ЭПИТАКСИАЛЬНЫЙ РОСТ, МОРФОЛОГИЯ И ТЕМПЕРАТУРНАЯ УСТОЙЧИВОСТЬ КРИСТАЛЛОВ КВАРЦЕПОДОБНОГО ДИОКСИДА ГЕРМАНИЯ

В. С. Балицкий^{1,*}, Д. В. Балицкий¹, академик РАН Д. Ю. Пущаровский², Л. В. Балицкая^{1,**}, Т. В. Сеткова¹, Т. Н. Докина¹

Поступило 06.06.2018 г.

Рассмотрены условия и механизмы эпитаксиального роста кристаллов кварцеподобного α -GeO₂ на кварцевых подложках с использованием испарительно-рециркуляционного метода. Выращены относительно однородные кристаллы α -GeO₂ массой до 200 г со скоростью роста до 0,3 мм/сут. Установлено, что молекулярная адгезия (сцепление) на границе кварцевой подложки и наросшего слоя α -GeO₂ не в состоянии предотвратить переход его в стабильную труднорастворимую рутилоподобную фазу. Это не позволяет осуществить промышленное выращивание монокристаллов ВГК, используя в качестве шихты смесь кварца и кварцеподобного α -GeO₂. Однако этот процесс, вероятно, может быть реализован при нахождении других, более растворимых германийсодержащих соединений, таких как, например, кварцеподобный кремнийсодержащий оксид германия.

Ключевые слова: диоксид германия, кварц, высокогерманиевый кварц, пьезоэлектрик, рост кристаллов, эпитаксия.

DOI: https://doi.org/10.31857/S0869-5652485167-70

В работе приведены результаты исследований, направленных на решение проблемы получения кварцеподобного α-GeO₂, используемого совместно с α-кварцем в качестве шихты при выращивании кристаллов высокогерманиевого кварца (ВГК) [1, 2]. Такие кристаллы — ограниченные твёрдые растворы с формулой $Si_{1-x}Ge_xO_2$, где x достигает максимального значения 0,31 мол.% при ~760 °С [1-4]. В более ранних работах мы показали, что в реальных условиях даже при 540-600 °C, 120-150 МПа кристаллы ВГК захватывают не более 10–15 мас.% оксила Ge. а для захвата его с максимально возможными содержаниями (до 35-39 мас.%) температуру надо повысить до 720-760 °С при не менее 180 МПа. Очевидно, что такие высокие ТР-параметры не приемлемы для освоения технологии выращивания кристаллов ВГК в промышленных автоклавах объёмом сотни и тысячи литров. Было выяснено также, что основная причина, ограничивающая рост кристаллов ВГК с высоким содержанием Ge, — резкое понижение его активности в растворе вследствие того, что хорошо растворимый в чистой воде и вод-

¹ Институт экспериментальной минералогии им. Д.С. Коржинского Российской Академии наук, ных электролитах шихтовой кварцеподобный α -GeO₂ при > 180 °C в присутствии воды переходит в стабильную труднорастворимую рутилоподобную фазу [5, 6]. В связи с этим мы попытались выяснить экспериментально, возможно ли предотвратить переход метастабильного α -GeO₂ в стабильную плохо растворимую рутилоподобную фазу или хотя бы повысить температуру этого перехода до *TP*-параметров выращивания обычного пьезокварца.

В методическом отношении указанные задачи представлялось возможным решить путём эпитаксиального выращивания кристаллов метастабильного чистого и кремнийсодержащего α-GeO₂ на кварцевой подложке. Последующая термообработка при одинаковых температурах наросшего слоя α-GeO₂ без кварцевой подложки и такого же слоя α-GeO₂, но совместно с кварцевой подложкой в комплексе с анализом рентгенограмм и данных дифференциально-термического анализа (ДТА) должны были показать, способна ли молекулярная адгезия (сцепление) предотвратить переход метастабильного кварцеподобного α-GeO₂ в стабильную рутилоподобную фазу или хотя бы повысить температуру этого перехода путём введения в структуру α -GeO₂ примеси стабильного в данных условиях α-кварца.

Эпитаксиальный рост α-GeO₂ на кварцевых подложках проводили, используя разработанный нами испарительно-рециркуляционный метод [7–9].

Черноголовка Московской обл.

² Московский государственный университет

им. М.В. Ломоносова

^{*}E-mail: balvlad@iem.ac.ru

^{**}E-mail: lvbalitskaya@mail.ru

Этим же методом, но с дополнительно размешёнными в кристаллизаторе обломками кварцевого стекла выращивали кремнийсодержащий α-GeO₂. Из выращенных кристаллов α-GeO₂ выпиливали кубические образцы 4 × 4 × 4 мм двух типов. Образцы первого типа — наросший слой чистого α-GeO₂, а второго типа — такой же слой α -GeO₂, но с кварцевой подложкой. Подготовленные таким образом образцы подвергали термообработке в воздушной атмосфере и в чистой воде при 160, 180, 200, 300, 400, 500, 700 °С в течение 24, 48, 97, 192, 264, 336 ч. Термообработку в воздушной атмосфере проводили в алундовых тиглях, помещая их в шахтные печи. В опытах с участием чистой воды использовали Cr-Ni-автоклавы объёмом 25 мл. Образцы размещали в алюминиевых (160-300 °C) и стальных (400-700 °С) ампулах. Давление в автоклавах задавали согласно *PVT*-зависимостям для чистой воды. Регулирование и контроль температуры осуществляли с использованием хромель-копелевых и хромельалюмелевых термопар с точностью ±3 °С и стандартных термоизмерительных приборов. В аналогичных условиях термообработке подвергали, кроме того, исходный (шихтовой) химреактив кварцеподобного α-GeO₂. После отключения печей алундовые тигли и автоклавы 10-15 мин охлаждали в проточной холодной воде. Затем исходные и термообработанные образцы исследовали с привлечением различных минералогических и кристаллографических методов. Твёрдые фазы изучали под бинокулярным (МБС-9) и поляризационным (Amplival po-d) микроскопами. Содержание Ge, Si и других элементов в кристаллах определяли с помощью локального рентгеноспектрального микроанализатора на цифровом электронном сканирующем микроскопе CamScan MV2300, оснащённом YAG-детекторами вторичных и отражённых электронов и энергодисперсионным рентгеновским микроанализатором с полупроводниковым Si(Li) детектором INCA Energy. Идентификацию структур полиморфных модификаций оксидов Ge и других новообразованных фаз проводили с помощью порошковых рентгенограмм, полученных на дифрактометре Bruker D8-advance. Выяснение возможного влияния примеси Si в структуре метастабильного α-GeO₂ на повышение температуры его перехода в стабильную рутилоподобную фазу проводили с использованием ДТА на термоанализаторе ТАG 24S16 "SETARAM" в платиновых тиглях в атмосфере воздуха. Масса образцов дроблёного α-GeO₂ составляла 150-200 мг. В каждом эксперименте измеряли кривые нагрева и охлаждения вместе с кривыми потери массы со скоростью 5 град/мин.

В общей сложности испарительно-рециркуляционным методом было выращено >50 кристаллов α -GeO₂ массой 10–200 г с толщиной нароста 4–12 мм на одну сторону от кварцевой подложки (рис. 1). Максимальные скорости эпитаксии α -GeO₂ не превышали 0,3 мм/сут и были зафиксированы на кварцевых подложках, параллельных базисному пинакоиду *c*{0001}. Минимальные скорости эпитаксии отмечали на подложках, параллельных грани гексагональной призмы *m*{1010} и составляли первые тысячные доли мм/сутки.

При концентрации в растворах гидроксида Na > 1 и фторида аммония > 3 мас.% помимо роста кристаллов α-GeO₂ на дне и стенках кристаллизаторов выпадали германаты Na и германаты аммония соответственно. Соотношения скоростей эпитаксиального роста кристаллов α-GeO₂ в различных кристаллографических направлениях близки к таковым кристаллов кварца, выращенным при 240-340 °С и 70-100 МПа. Эти соотношения, как и кристаллографическая ориентировка кварцевых подложек, их форма и размеры определяют внешнюю морфологию выращенных кристаллов α-GeO₂. Кварцевые подложки, параллельные граням базисного пинакоида с{0001}, тригональной призмы $x\{11\overline{2}0\}$ и тригональной пирамиды $s\{11\overline{2}1\}$, обрастали слоями роста метастабильного α-GeO₂ с образованием рельефа, сложенного, как правило, совокупностью плотно примыкающих друг к другу мелких (от сотых долей до первых миллиметров) трёхгранных пирамидок, сложенных гранями $+s\{11\overline{2}1\}$. Тем

Рис. 1. Кристалл метастабильного кварцеподобного α -GeO₂, эпитаксиально выращенный при 140 °C и давлении насыщенного пара в растворах 0,3 мас.% NH₄F на кварцевой подложке, параллельной грани базисного пинакоида *c*{0001}. Толщина кристалла 12 мм.

не менее при малых пересыщениях на таких подложках возможно формирование относительно однородных кристаллов α -GeO₂ (рис. 2).

Совершенный рост кристаллов α -GeO₂ отмечен и на кварцевых подложках, параллельных гладким граням $r\{10\overline{1}1\}$, $z\{01\overline{1}1\}$ и гексагональной призмы $m\{10\overline{1}0\}$. Поверхность ромбоэдрических граней покрыта вицинальными холмиками роста. Призматические грани имеют едва заметный рельеф, представленный комбинацией пологих ступеней роста и асимметричных вициналей. Во многих случаях кварцевые подложки и наросший слой кристаллов подвержены тонкой трещиноватости.

Несколько неожиданными оказались рентгенограммы исходного химреактива α -GeO₂ и эпитаксиально выращенных на его основе кристаллов α -GeO₂. В частности, было выяснено, что после термообработки при 160–700 °C на воздухе (продолжительность 24–336 ч) исходный кварцеподобный химреактив α -GeO₂ и выращенные кристаллы α -GeO₂ практически полностью сохраняют кварцеподобную структуру, хотя при температуре > 300 °C после 48-часовой выдержки в рентгенограммах начинают появляться весьма слабые полосы рутилоподобной фазы. Интенсивность их несколько возрастает по мере повышения температуры и продолжительности термообработки метастабильного кварцеподобного α -GeO₂ (рис. 3).

Рис. 2. Наиболее однородные пластинки кристалла низкотемпературного метастабильного α -GeO₂, выращенного во фторидных растворах с низким пересыщением при 130 °С и давлении насыщенного пара. Ширина центральной пластинки 14 мм.

ДОКЛАДЫ АКАДЕМИИ НАУК том 485 № 1 2019

Рис. 3. Рентгенограммы кристаллов эпитаксиально выращенного метастабильного кварцеподобного α -GeO₂, предварительно отожжённых на воздухе при 180, 300, 400, 700 °C в течение 336 ч. Треугольники — рефлексы, относящиеся к фазе кварцеподобного α -GeO₂, квадраты — к рутилоподобному GeO₂.

По-иному ведёт себя метастабильный кварцеподобный α-GeO₂ при термообработке в присутствии воды. Стабильная рутилоподобная фаза появляется уже при 160 °С. Это приводит к остановке эпитаксиального зарождения и роста кварцеподобного α-GeO₂ на кварцевых подложках. При дальнейшем повышении температуры до 180-200 °С весь шихтовой и наращённый α-GeO₂ практически полностью переходит в рутилоподобную фазу. При этом конкретные температуры указанного перехода в образцах α-GeO₂ без кварцевой подложки и при её наличии отличаются не более чем на 2-3 °C, т.е. находятся в пределах точности измерения температуры. Это свидетельствует о том, что силы молекулярной адгезии не в состоянии предотвратить переход метастабильного α-GeO₂ в стабильную рутилоподобную фазу и исключает, таким образом, возможность выращивания кристаллов ВГК с использованием в качестве шихты кварцеподобного α-GeO₂. Вместе с тем изучение кремнийсодержащего метастабильного α-GeO2 методом ДТА показало, что даже малые содержания в нём Si (до 4,5 мас.%) способны расширить температурную область метастабильного существования α-GeO₂ до 280-300 °С (рис. 4). Не исключено, что эти температуры могут быть повышены при более высоких содержаниях Si в структуре α -GeO₂.

Рис. 4. Кривые ДТА кварцеподобного α -GeO₂. 1 — исходный (шихтовой) реактив кварцеподобного α -GeO₂, 2 — эпитаксиально выращенный чистый кварцеподобный α -GeO₂, 3 — эпитаксиально выращенный кварцеподобный α -GeO₂ с содержанием SiO₂ 4,38 мас.%, 4 — эпитаксиально выращенный кварцеподобный α -GeO₂ с двумя зонами роста с содержанием SiO₂ 2,4 и 3,1 мас.% соответственно.

Таким образом, полученные результаты указывают в целом на возможность эпитаксиального выращивания относительно однородных и крупных кристаллов кварцеподобного α -GeO₂ на кварцевых подложках. Одновременно это позволило установить, что молекулярная адгезия на границе кварцевой подложки и наросшего слоя α -GeO₂ не в состоянии предотвратить переход его в стабильную труднорастворимую рутилоподобную фазу. Данное обстоятельство не позволяет осуществить промышленное выращивание монокристаллов ВГК при использовании в качестве шихты добавки метастабильного кварцеподобного α-GeO₂. Однако этот процесс, вероятно, может быть реализован при нахождении других, более растворимых германийсодержащих соединений, таких как, например, кварцеподобный кремнийсодержащий α-GeO₂.

Источники финансирования. Работа поддержана РФФИ (гранты № 17–05–00976 и № 18–05–00332).

СПИСОК ЛИТЕРАТУРЫ

- Балицкий В.С., Балицкий Д.В., Пущаровский Д.Ю., Сеткова Т.В., Балицкая Л.В., Некрасов А.Н. // ДАН. 2017. Т. 477. № 5. С. 578–581.
- Балицкий В.С., Балицкий Д.В., Некрасов А.Н., Балицкая Л.В., Бондаренко Г.В., Самохвалова О.Л. // ДАН. 2004. Т. 396. № 1. С. 89–92.
- Clavier D., Prakasam M., Largeteau A., Boy J.J., Hehlen B., Cambon M., Cambon O. // Cryst. Eng. Communs. 2016. V. 18. № 14. P. 2500–2508.
- Ranieri V., Darracq S., Cambon M., Haines J., Cambon O., Largeteau A., Demazeau G. // Inorg. Chem. 2011. V. 50. № 10. P. 4632–4639.
- 5. *Косова Т.Б., Демьянец Л.Н. //* ЖНХ. 1988. Т. 33. В. 10. С. 2654–2661.
- 6. *Roy R., Theokritoff S.* // J. Cryst. Growth. 1972. V. 12. № 1. P. 69–72.
- Балицкий Д.В., Балицкий В.С., Писаревский Ю.В., Сильвестрова О.Ю., Филиппо Э. // Кристаллография. 2000. Т. 45. № 1. С.151–153.
- Balitsky D.V., Balitsky V.S., Puscharovsky D.Yu., Kosenko A.V., Bondarenko G.V. // J. Cryst. Growth. 1997. V. 180. P. 212–219.
- Balitsky D.V., Balitsky V.S., Pisarevsky Yu.V., Philippot E., Puscharovsky D.Yu., Sil'vestrova O.Yu. // Ann. Chim. Mat. 2001. V. 26. P. 183–192.

EPITAXIAL GROWTH, MORPHOLOGY AND TEMPERATURE STABILITY OF QUARTZLIKE DIOXIDE GERMANIUM CRYSTALS

V. S. Balitsky, D. V. Balitsky, Academician of the RAS D. Yu. Pushcharovsky, L. V. Balitskaya, T. V. Setkova, T. N. Dokina

Received June 16, 2018

The conditions and mechanisms of epitaxial growth of quartz-like α -GeO₂ crystals on quartz substrates using an evaporative-recirculation method are considered. Relatively homogenous α -GeO₂ crystals weighing up to 200 g are grown at a growth rate of up to 0.3 mm/day. It is established that molecular adhesion at the boundary between the quartz substrate and the overgrown layer of α -GeO₂ cannot prevent its transition to a stable poorly soluble rutile-like phase. This makes it impossible to grow high-germanium quartz single crystals industrially using a mixture of quartz and quartz-like α -GeO₂ as a nutrient. However, this process can be implemented if other more soluble germanium-containing compounds, such as quartz-like Si-containing germanium-oxide, are found.

Keywords: germanium dioxide, quartz, high germanium quartz, piezoelectric, crystal growth, epitaxy.