——— ФИЗИКА =

УДК 535.338.334

ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ ОПТИЧЕСКИ ОХЛАЖДЁННЫХ АТОМОВ КАЛЬЦИЯ С ИСПОЛЬЗОВАНИЕМ МЕТОДА ДИФФЕРЕНЦИАЛЬНОЙ ДВУХФОТОННОЙ СПЕКТРОСКОПИИ

Б. Б. Зеленер, А. А. Бобров, Е. В. Вильшанская*, И. Д. Аршинова, С. А. Саакян, В. А. Саутенков, Б. В. Зеленер, академик РАН В. Е. Фортов

Поступило 19.11.2018 г.

Продемонстрирован дифференциальный двухфотонный метод измерения температуры атомов ⁴⁰Ca в непрерывно работающей магнитооптической ловушке. Экспериментально исследованы когерентные двухфотонные резонансы на ридберговском переходе $4s^2 \, {}^1S_0 - 50 \, {}^1S_0$ с использованием резонансных лазерных пучков, распространяющихся под разными углами. Была измерена температура облака атомов 40 Ca в зависимости от отстройки частоты охлаждающего лазерного излучения.

Ключевые слова: магнитооптическая ловушка, ридберговские атомы, двухфотонная спектроскопия, уширение спектра.

DOI: https://doi.org/10.31857/S0869-56524853281-284

Существует множество различных способов измерения температуры в непрерывно работающей магнитооптической ловушке (МОЛ). Один из возможных подходов связан с использованием узкополосного часового перехода. Этот подход применим для атомов иттербия и щелочноземельных атомов. имеющих два валентных электрона [1-4]. Так, в работе [4] проведены измерения уширения оптическим полем основного состояния и атомной температуры с переменными интенсивностями пучка излучения в МОЛ с атомами иттербия. Экспериментальные результаты сравнивались с расчётами [3-5], и было получено удовлетворительное согласие. Другие подходы включают в себя различные когерентные методы, такие как комбинационное рассеяние или четырёхволновое смешение [6-8]. Эти методы являются сложными, применимыми к конкретным экспериментальным установкам и могут потребовать отключения МОЛ. Представленный в настоящей работе дифференциальный оптико-спектроскопический метод оценки температур может быть использован в различных газовых средах в широком диапазоне параметров. Его можно применять как в непрерывно работающей МОЛ при температуре $10^{-4} - 10^{-3}$ K, так и в горячей газовой кювете.

В работах [9–11] нами был предложен метод измерения температуры по разнице ширин двухфотонных резонансов, полученных с помощью встречных и совместно распространяющихся лазерных

*E-mail: eva.villi@gmail.com

пучков. Такой метод позволяет измерять температуры ниже 1 мК. С увеличением температуры амплитуда резонанса в случае сонаправленных пучков уменьшается из-за большого доплеровского уширения, и поэтому для уверенного наблюдения такого резонанса может не хватить мощности излучения лазера. В настоящей работе для измерения температуры сравнивали узкие двухфотонные ридберговские резонансы, полученные с помощью встречных лазерных пучков и лазерных пучков, распространяющихся под углом. Таким образом можно оценить разницу между спектральными ширинами наблюдаемых резонансов. При этом разница определяется только тепловым движением атомов, что даёт возможность определить их температуру.

В настоящей работе мы измеряли температуру в непрерывно работающей МОЛ⁴⁰Са, которую приготавливали при помощи охлаждающего лазера с длиной волны 423 нм, отстроенной на 33 МГц от охлаждающего перехода, и лазера оптической накачки с длиной волны 672 нм.

Далее использовались лазерные пучки с волновыми векторами \mathbf{k}_1 и \mathbf{k}_2 с длинами волн 423 и 390 нм соответственно для создания когерентного ридберговского резонанса в состояние 50 1S_0 с отстройкой от промежуточного уровня $\Delta = 237$ МГц (рис. 1а). Отстройка создавалась для того, чтобы в ширину полученных резонансов не входила ширина промежуточного резонанса $4s4p^1P_1$. На рис. 16 представлена схема эксперимента, в котором измерялись ширины ридберговских резонансов, полученных при использовании встречных лазерных пучков,

Объединённый институт высоких температур

Российской Академии наук, Москва

Рис. 1. а — схема энергетических уровней атома ⁴⁰Са для возбуждения в ридберговские состояния; \mathbf{k}_1 и \mathbf{k}_2 — волновые векторы пучков с длинами волн 423 и 390 нм соответственно для создания когерентного резонанса в состояние 50 1S_0 с отстройкой от промежуточного уровня $\Delta = 237$ МГц; б — схема эксперимента, при котором измеряются ширины резонансов при использовании встречных лазерных пучков ($\alpha = 0$) и резонансов, полученных с лазерными пучками под углом $\alpha = 60^{\circ}$.

и ширины резонансов, полученных с лазерными пучками под углом $\alpha = 60^{\circ}$. Лазер с длиной волны 390 нм, направленный в центр МОЛ, осуществлял сканирование вблизи частоты ридберговского перехода. Когда частота излучения совпадала с частотой перехода, фотоприёмник регистрировал уменьшение флюоресценции атомов в МОЛ [12]. Это связано с тем, что при переходе на ридберговский уровень атомы перестают быть резонансными с пучками ловушки и улетают из зоны захвата. Так как приток новых атомов из печки постоянен, в ловушке снова формируется облако атомов после прохождения лазера на длине волны 390 нм частоты резонанса. На рис. 2 представлены два узких двухфотонных когерентных резонанса на переходе $4s^{2} {}^{1}S_{0}$ -50 ${}^{1}S_{0}$, полученные при разных углах между волновыми векторами \mathbf{k}_{1} и \mathbf{k}_{2} .

Запишем ширину двухфотонного резонанса в виде [10]

$$\Delta \omega = \Delta \omega_B + 2(\ln 2)^{1/2} |\mathbf{k}_1 + \mathbf{k}_2| u_{th}, \qquad (1)$$

где $\Delta \omega_B$ — уширение, не связанное с эффектом Доплера; u_{th} — характерная тепловая скорость. Тепловая скорость выражалась через температуру атомов T и массу атомов m следующим образом:

$$u_{th} = \sqrt{\frac{2k_BT}{m}}.$$
 (2)

Модуль суммы волновых векторов связан с углом α следующей формулой:

$$|\mathbf{k}_1 + \mathbf{k}_2| = \sqrt{k_1^2 + k_2^2 - 2k_1k_2\cos\alpha},$$
 (3)

где $k_i = 1/\lambda_i$ — модули волновых векторов.

Х

Температуру атомов можно вычислить путём сравнения ширин двухфотонных спектральных резонансов, полученных для разного значения угла α:

$$T = \frac{m}{2k_B} \left\{ (\Delta \omega' - \Delta \omega) \times \left[2(\ln 2)^{1/2} (|\mathbf{k}_1' + \mathbf{k}_2'| - |\mathbf{k}_1 + \mathbf{k}_2|) \right]^{-1} \right\}^2.$$
(4)

На рис. 3 представлен график зависимости температуры газа атомов в МОЛ от отстройки охлаждающего лазерного излучения, а также дана оценка температуры облака холодных атомов по простой доплеровской теории [10]:

Рис. 2. Двухфотонные когерентные резонансы на переходе $4s^2 {}^1S_0 - 50 {}^1S_0$ в случае встречных волновых векторов \mathbf{k}_1 и \mathbf{k}_2 ($\alpha = 0$) и под углом $\alpha = 60^\circ$. Штриховые кривые — аппроксимация функцией Фойгта с шириной FWHM, равной 4,5 МГц ($\alpha = 0$) и 9,0 МГц ($\alpha = 60^\circ$).

Рис. 3. Зависимость температуры от отстройки частоты пучков МОЛ. Штриховой линией обозначено значение доплеровского предела для кальция 0,831 мК [13]. Сплошная кривая — теоретическая зависимость температуры от отстройки частоты охлаждающего излучения по доплеровской теории (5).

$$k_{B}T = \frac{h\gamma_{2}}{4} \frac{1 + I_{tot}/I_{s} + (2\Delta/\gamma_{2})^{2}}{|2\Delta|/\gamma_{2}},$$
 (5)

где *T* — температура атомов, γ_2 — скорость спонтанного распада охлаждающего перехода 4s² ¹S₀—4s4p¹P₁, *I*_{tot} — полная интенсивность пучков МОЛ, *I*_s = 60 мВт/см² — интенсивность насыщения на переходе охлаждения, Δ — отстройка пучков МОЛ. Эксперимент проходил при следующих значениях параметров: $\gamma_2 = 34$ МГц, *I*_{tot} = 19,3 мВт/см². Хотя доплеровская теория не является точной, мы получили хорошее согласие эксперимента и теории. В работе [14] при измерении температуры по баллистическому разлёту были получены схожие результаты. Интенсивность охлаждающего излучения в нашем случае далека от насыщения.

В заключение хотелось бы отметить, что при определении температуры атомов ⁴⁰Ca в MOЛ, в отличие от ⁷Li [10], нам не удалось получить двухфотонный когерентный резонанс в случае сонаправленных пучков. Это объясняется тем, что температура атомов в MOЛ с ⁴⁰Ca на порядок больше температуры в MOЛ с ⁷Li, резонанс в случае⁴⁰Ca намного шире, и нам не хватило мощности лазера с волновым вектором \mathbf{k}_2 для получения резонанса в случае сонаправленных пучков. Поэтому для получения второго узкого когерентного резонанса нам пришлось изменить угол между волновыми векторами до $\alpha = 60^{\circ}$. В случае ещё больших температур можно использовать ещё меньшие углы. Поэтому разработанный подход с изменением угла является универсальным и может быть применён также для измерения температуры в ячейках с горячим газом. Отметим, что возможно бездоплеровское возбуждение ридберговских состояний через трёхфотонные переходы [15].

Источник финансирования. Работа выполнена при финансовой поддержке РНФ (грант № 18–12–00424).

СПИСОК ЛИТЕРАТУРЫ

- Honda K., Takahashi Y., Kuwamoto T., et al. // Phys. Rev. A. 1999. V. 59. № 2. P. R934–R937.
- Loftus T., Bochinski J.R., Mossberg T.W. // Phys. Rev. A. 2000. V. 61. 061401.
- Xu X., Loftus T.H., Smith M.J. // Phys. Rev. A. 2002. V. 66. 011401.
- Cristiani M., Valenzuela T., Gothe H. // Phys. Rev. A. 2010. V. 81. 063416.
- Choi S.-K., Park S.-E., Chen J. // Phys. Rev. A. 2008. V. 77. 015405.
- Meacher D. R., Boiron D., Metcalf H. // Phys. Rev. A. 1994. V. 50. № 3. P. R1992–R1994.
- 7. *Mitsunaga M., Yamashita M., Koashi M. //* Opt. Lett. 1998. V. 23. № 11. P. 840–842.
- Tabosa J. W.R., Lezama A., Cardoso G.C. // Opt. Commun. 1999. V. 165. Iss. 1–3. P. 59–64.
- Sautenkov V.A., Saakyan S.A., Vilshanskaya E.V. // J. Russ. Laser Res. 2017. V. 38. № 1. P. 91–95.
- 10. Sautenkov V.A., Saakyan S.A., Bobrov A.A. // J. Opt. Soc. Amer. B. 2018. V. 35. № 7. P. 1546–1551.
- 11. *Bobrov A.A., Saakyan S.A., Sautenkov V.A.* // Quantum Electron. 2018. V. 48. № 5. P. 438–442.
- 12. Зеленер Б.Б., Саакян С.А., Саутенков В.А. // Письма в ЖЭТФ. 2015. Т. 148. № 11. С. 1–6.
- 13. *Cavasso Filho R.L., Magno W.C., Manoel D.A.* // J. Opt. Soc. Amer. B. 2003. V. 20. № 7. P. 994–1002.
- Witte A., Kisters T., Riehle F. // J. Opt. Soc. Amer. B. 1992. V. 9. № 7. P. 1030–1037.
- 15. Ryabtsev I.I., Beterov I.I., Tretyakov D.B., Entin V.M., Yakshina E.A. // Phys. Rev. A. 2011. V. 84. 053409.

ЗЕЛЕНЕР и др.

TEMPERATURE MEASUREMENTS OF OPTICALLY COOLED CALCIUM ATOMS USING DIFFERENTIAL TWO-PHOTON SPECTROSCOPY

B. B. Zelener, A. A. Bobrov, E. V. Vilshanskaya,I. D. Arshinova, S. A. Saakyan, V. A. Sautenkov,B. V. Zelener, Academician of the RAS V. E. Fortov

Joint Institute of High Temperature of the Russian Academy of Sciences, Moscow, Russian Federation

Received November 19, 2018

A differential two-photon method of measuring the temperature of 40 Ca atoms in a continuously operating magneto-optical trap is demonstrated. Coherent two-photon resonances at the $4s^2 {}^1S_0$ -50 1S_0 Rydberg transition have been investigated experimentally using resonance laser beams propagating at different angles. The temperature of the cloud of 40 Ca atoms was measured depending on the frequency detuning of the cooling laser radiation.

Keywords: magneto-optical trap, Rydberg atoms, two-photon spectroscopy, spectral broadening.