= ФИЗИЧЕСКАЯ ХИМИЯ

УДК 541.148

НАНОСТРУКТУРЫ НА ОСНОВЕ СИСТЕМЫ ZrO₂-Y₂O₃ ДЛЯ ПЕРОВСКИТНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ М. Ф. Вильданова^{1,*}, А. Б. Никольская¹, С. С. Козлов¹, О. К. Карягина¹, Л. Л. Ларина¹, О. И. Шевалеевский¹, О. В. Альмяшева², член-корреспондент РАН В. В. Гусаров³

Поступило 16.10.2018 г.

Исследованы структурные, оптические и энергетические характеристики наночастиц состава ZrO_2/Y_2O_3 с содержанием 0; 3 и 10 мол.% Y_2O_3 , синтезированных в гидротермальных условиях. С использованием полученных наноструктур созданы тонкоплёночные электронопроводящие фотоэлектроды для перовскитных солнечных элементов вида стекло/FTO/ZrO₂- $Y_2O_3/CH_3NH_3PbI_3$ /spiro-MeOTAD/Au. Сравнительные исследования фотовольтаических параметров ПСЭ в условиях солнечного облучения AM1.5G (1000 BT/ M^2) показали, что элементы с фотоэлектродами на основе системы $ZrO_2-Y_2O_3$ обладают значительно большей эффективностью преобразования солнечной энергии в электрическую в сравнении с перовскитными солнечными элементами на основе электродов из недопированных наночастиц ZrO_2 . *Ключевые слова*: наноструктуры, ZrO_2 , тонкие плёнки, полупроводники, солнечная фотоэлектрика, перовскитные элементы.

DOI: https://doi.org/10.31857/S0869-56524846712-715

Разработка новых наноструктурированых материалов для солнечных элементов (СЭ) следующего поколения представляет серьёзный вызов для современной физической химии и химической технологии [1]. Наиболее перспективны СЭ на основе органонеорганических соединений со структурой перовскита — перовскитные солнечные элементы (ПСЭ) [2]. Эффективность ПСЭ во многом определяет светопоглощающий электронопроводящий фотоэлектрод, в качестве которого используют наноструктурированные плёнки диоксида титана (TiO₂) с шириной запрещённой зоны $E_{\sigma} \sim 3,0-$ 3,2 эВ [3]. Вопрос о применимости в электронопроводящих системах оксидных материалов с очень большими E_g всегда был дискуссионным, так как транспортные характеристики материала ухудшаются по мере увеличения E_g [4]. Однако в наноструктурированных системах перенос заряда может происходить не только по классической схеме, но и на основе прыжкового механизма по локализованным состояниям в запрещённой зоне, которые

возникают из-за наличия дефектов на поверхности наночастиц [5]. Большой интерес представляет использование в электронопроводящих наноструктурах диоксида циркония (ZrO₂) с $E_g = 5-5,7$ эВ [6]. Структура и морфология наночастиц ZrO₂ зависят от условий синтеза [7]. При этом допирование ZrO₂ оксидом иттрия (Y₂O₃) позволяет варьировать размеры частиц и характеристики получаемой системы ZrO₂-Y₂O₃. Было показано, что допирование оксидами редкоземельных элементов приводит к формированию структур типа "ядро—оболочка" с высокой концентрацией поверхностных дефектов [8], а использование допированных фотоэлектродов в СЭ увеличивает эффективность фотопреобразования [9, 10].

Ранее сообщалось об исследовании работы $\Pi C \Im$ с фотоэлектродами из недопированных наночастиц ZrO₂ [11]. В настоящей работе мы синтезировали недопированные и допированные Y_2O_3 нанопорошки ZrO₂, использованные для создания наноструктурированных фотоэлектродов и конструирования на их основе серии $\Pi C \Im$. Были также измерены основные фотовольтаические характеристики сконструированных $\Pi C \Im$.

Наночастицы системы $ZrO_2-Y_2O_3$ получали дегидратацией совместно осаждённых гидроксидов в гидротермальных условиях по методике, описанной в [12]. Фотоэлектроды из наноструктур $ZrO_2 Y_2O_3$ толщиной около 200 нм были сформированы

¹ Институт биохимической физики им. Н.М. Эмануэля Российской Академии наук, Москва

²Санкт-Петербургский государственный

электротехнический университет "ЛЭТИ"

им. В.И. Ульянова (Ленина)

³Физико-технический институт им. А.Ф. Иоффе

Российской Академии наук, Санкт-Петербург

^{*}E-mail: mvildanova@sky.chph.ras.ru

на стеклянных подложках с проводящим покрытием методом спин-коутинга (spin-coating). Конструирование ПСЭ проводили в атмосферных условиях при высокой влажности (порядка 50–60%) последовательным нанесением на поверхность фотоэлектрода перовскитного слоя из иодида свинца и иодида метиламмония CH₃NH₃PbI₃, слоя дырочного проводника Spiro-MeOTAD и токопроводящих золотых контактов [3, 12]. Таким образом были получены ПСЭ со структурой стекло/FTO/ZrO₂–Y₂O₃/CH₃NH₃PbI₃/spiro-MeOTAD/Au, в которых содержание Y₂O₃ составляло 0 (недопированная система), 3 и 10 мол.%.

Результаты элементного анализа (EDAX) нанопорошков ZrO₂/Y₂O₃ (0, 3, 10 мол.% Y₂O₃) показали, что соотношение элементов Zr : Y соответствует составу, заданному при синтезе композиций, в пересчёте на оксиды. Рентгеновская дифрактограмма ZrO₂ (рис. 1) содержит максимумы, отвечающие тетрагональной (53%) и моноклинной (47%) модификациям ZrO₂. Введение в систему 3 мол.% Y₂O₃ приводит к заметному уменьшению содержания фазы *m*-ZrO₂ (5%), а 10 мол.% Y₂O₃ — к её полному исчезновению. Размер кристаллитов *m*-ZrO₂ и *t*-ZrO₂ составил 16 ± 2 и 14 ± 2 нм соответственно. Показано, что при введении 10 мол. У У2О3 размер кристаллитов уменьшается до 5 ± 1 нм, что обусловлено формированием структуры "ядро-оболочка", в которой поверхностный слой наночастиц обогащён Y_2O_3 [13]. Допирование Y_2O_3 приводит к стабилизации фазы t-ZrO₂, вследствие чего образцы приобретают монофазную структуру. Спектры диффузного отражения (R) для системы $ZrO_2 - Y_2O_3$ (рис. 2) показывают, что содержание У2О3 влияет на величину *E*_g, которая для прямых электронных переходов вычисляется на основе следующего соотношения Тауца [14]:

Рис. 1. Рентгеновские дифрактограммы нанопорошков на основе $ZrO_2-Y_2O_3$; $1 - t-ZrO_2$, $2 - m-ZrO_2$.

ДОКЛАДЫ АКАДЕМИИ НАУК том 484 № 6 2019

Рис. 2. Спектры диффузного отражения для порошковых образцов ZrO₂ (1), ZrO₂/3 мол.% Y₂O₃ (2) и ZrO₂/10 мол.% Y₂O₃ (3).

Здесь α — коэффициент оптического поглощения, *C* — постоянная, hv — энергия фотона.

Численные значения E_g для ZrO₂ и ZrO₂–Y₂O₃ были получены графической экстраполяцией линейных участков зависимостей (αhv)² от энергии фотона (рис. 3) и составили: для недопированного ZrO₂ 5,53 эВ, для ZrO₂/Y₂O₃ (3 мол.%) 5,63 эВ и для ZrO₂/Y₂O₃ (10 мол.%) 5,45 эВ. Таким образом, установлено, что E_g растёт по мере допирования, однако для ZrO₂/Y₂O₃ (10 мол.%) E_g оказалось меньше, чем для недопированного ZrO₂, что связано со значительно меньшими размерами кристаллитов.

Рис. 3. Графическое определение оптической величины E_g для образцов $ZrO_2/3$ мол.% Y_2O_3 (*1*) и $ZrO_2/10$ мол.% Y_2O_3 (*2*) по зависимостям (αhv)² от *hv*.

Рис. 4. ВАХ для ПСЭ с фотоэлектродами из наноструктур на основе системы $ZrO_2 - Y_2O_3$. На врезке фотографии сконструированных ПСЭ.

Вольт-амперные характеристики (ВАХ), приведённые на рис. 4, получены при облучении ПСЭ интенсивностью $P_{IN} = 1000$ Вт/м² (AM1.5G). Фотовольтаические параметры ПСЭ приведены в табл. 1. Эффективность фотопреобразования η рассчитывалась на основе ВАХ по формуле

$$\eta = \frac{J_{SC}V_{OC}FF}{P_{IN}} \cdot 100\%$$

где J_{SC} — плотность тока короткого замыкания, V_{OC} — напряжение холостого хода, FF — фактор заполнения.

Исследования работы ПСЭ с фотоэлектродами из недопированного ZrO_2 и системы $ZrO_2-Y_2O_3$ показали преимущества допированных фотоэлектродов, при использовании которых наблюдались более высокие токи короткого замыкания, факторы заполнения и повышенные эффективности преобразования солнечной энергии в электрическую. Наилучшее значение эффективности в 10,46% получено для ПСЭ с фотоэлектродом ZrO_2/Y_2O_3 (10 мол.%), что значительно превышает соответствующую величину в 5,1% для ПСЭ на основе ZrO_2 фотоэлектрода.

В результате мы синтезировали и изучили наноструктуры на основе системы $ZrO_2-Y_2O_3$ с различным содержанием Y_2O_3 , которые использованы для создания тонкоплёночных электронопроводящих фотоэлектродов для ПСЭ. Сконструированы и исследованы ПСЭ вида стекло/FTO/ZrO₂-Y₂O₃/ CH₃NH₃PbI₃/spiro-MeOTAD/Au. Показано, что эффективность преобразования солнечной энергии в ПСЭ с фотоэлектродами на основе системы ZrO_2 -Y₂O₃ значительно превышает аналогичный показатель для ПСЭ с фотоэлектродом из недопированного

Таблица 1. Фотовольтаические параметры ПСЭ с фотоэлектродами из наноструктур на основе системы $ZrO_2 - Y_2O_3$

Тип фотоэлектрода	<i>V_{OC}</i> , B	<i>J_{OC}</i> , мА/см ²	<i>FF</i> , отн. ед.	η, %
ZrO ₂	0,92	9,77	0,56	5,1
ZrO ₂ /Y ₂ O ₃ (3 мол.%)	1,01	12,42	0,69	8,66
ZrO ₂ /Y ₂ O ₃ (10 мол.%)	1,02	13,86	0,74	10,46

ZrO₂. Полученные результаты продемонстрировали возможность успешного применения наноструктурированных материалов с очень большой запрещённой зоной ($E_g > 5$ эВ) в электронопроводящих фотоэлектродах для солнечных элементов.

Источник финансирования. Исследование выполнено за счёт гранта Российского научного фонда (проект № 17–19–01776).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Shevaleevskiy O.* // Pure and Appl. Chem. 2008. V. 80. № 10. P. 2079–2089.
- Marinova N., Tress W., HumphryBaker R., Dar M.I., Bojinov V., Zakeeruddin S.M., Nazeeruddin M.K., Gratzel M. // ACS Nano. 2015. V. 9. P. 4200–4209.
- Шевалеевский О.И., Никольская А.Б., Вильданова М.Ф., Козлов С.С., Алексеева О.В., Вишнёв А.А., Ларина Л.Л. // Хим. физика. 2018. Т. 37. № 8. С. 36–42.
- Sze S.M., Ng K.K. Physics of Semiconductor Devices. V. 1/2. N.Y.: Wiley, 2006. 832 p.
- Oum K., Lohse P.W., Klein J.R., Flender O., Scholz M., Hagfeldt A., Boschloo G., Lenzer T. // Phys. Chem. and Chem. Phys. 2013. V. 15. P. 3906–3916.
- Chang S., Doong R. // Chem. Mater. 2007. V. 19. P. 4804–4810.
- 7. *Bugrov A.N., Almjasheva O.V.* // Nanosystems: Phys., Chem., Math. 2013. V. 4. № 6. P. 810–815.
- Альмяшева О.В., Смирнов А.В., Федоров Б.А., Томкович М.В., Гусаров В.В. // ЖОХ. 2014. Т. 84. № 5. С. 710–716.
- 9. Tsvetkov N., Larina L., Shevaleevskiy O., Ahn B.T. // Energ. Environ. Sci. 2011. V. 4. P. 1480–1486.
- Kozlov S., Nikolskaia A., Larina L., Vildanova M., Vishnev A., Shevaleevskiy O. // Phys. Status Solidi. A. 2016. V. 213. P. 1801–1806.
- Bi D., Moon S.J., Haggman L., Boschloo G., Yang L., Johansson E.M.J., Nazeeruddin M.K., Gratzel M., Hagfeldt A. // RSC Adv. 2013. V. 3. № 41. P. 18762–18766.
- Vildanova M.F., Kozlov S.S., Nikolskaia A.B., Shevaleevskiy O.I., Tsvetkov N.A., Alexeeva O.V., Larina L.L. // Nanosystems: Phys., Chem., Math. 2017. V. 8. № 4. P. 540–546.
- 13. *Almjasheva O.V., Krasilin A.A., Gusarov V.V. //* Nanosystems: Phys., Chem., Math. 2018. V. 9. № 4. P. 568–572.
- Tauc J., Grigorovici R., Vancu A. // Phys. Status Solidi. 1966. V. 15. P. 627–637.

ДОКЛАДЫ АКАДЕМИИ НАУК том 484 № 6 2019

NANOSTRUCTURED ZrO₂-Y₂O₃-BASED SYSTEMS FOR PEROVSKITE SOLAR CELLS

M. F. Vildanova, A. B. Nikolskaia, S. S. Kozlov, O. K. Karyagina, L. L. Larina, O. I. Shevaleevskiy, O. V. Almjasheva, Corresponding Member of the RAS V. V. Gusarov

Received October 16, 2018

 $ZrO_2-Y_2O_3$ nanostructured systems with different yttria content ($Y_2O_3 = 0$, 3 and 10 mol.%) were synthesized under hydrothermal conditions and their structural, optical and electronic properties were investigated. Using $ZrO_2-Y_2O_3$ systems the electron-conductive thin-film photoelectrodes were fabricated and used to develop the perovskite solar cells (PSCs) with the device configuration glass/FTO/ $ZrO_2-Y_2O_3/CH_3NH_3PbI_3$ /spiro-MeOTAD/Au. The comparative studies of the PSCs photovoltaic parameters revealed that under 1000 W/m² (AM1.5G) illumination solar cells with $ZrO_2-Y_2O_3$ photoelectrodes demonstrated considerably higher power conversion efficiency in comparison with PSCs based on the undoped ZrO_2 photoelectrodes.

Keywords: nanostructures, ZrO₂, thin films, semiconductors, solar photovoltaics, perovskite solar cells.