УДК 549.73+548.736.5+430.123 (495.11)

НОВЫЕ ДАННЫЕ О ФИДЛЕРИТЕ-1А ИЗ АНТИЧНЫХ ШЛАКОВ ЛАУРИОНА, ГРЕЦИЯ: КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СИСТЕМА ВОДОРОДНЫХ СВЯЗЕЙ

Н. В. Зубкова¹*, Н. В. Чуканов², член-корреспондент РАН И. В. Пеков¹, академик РАН Д. Ю. Пущаровский¹, А. Катеринопулос³, П. Вудурис³, А. Магганас³

Поступило 20.04.2017 г.

На монокристалле изучена кристаллическая структура (R = 0,0750) фидлерита-1A Pb₃Cl₄F(OH) · H₂O из античных шлаков Лауриона (Греция). Минерал триклинный, a = 8,5741(7), b = 8,0480(5), c = 7,2695(4) Å, $\alpha = 90,087(5)$, $\beta = 102,126(6)$, $\gamma = 103,424(6)^{\circ}$, V = 476,37(6) Å³, Z = 2. Катионы Pb²⁺ центрируют двухшапочные тригональные призмы Pb(1)F(H₂O)Cl₆, Pb(2)(OH)₂FCl₅ и Pb(3)(OH)F₂Cl₅. В структуре присутствует дополнительная позиция Pb', на 10% заполненная Pb²⁺. Выделяются два основных структурных фрагмента, чередующихся вдоль оси a: (100) слои из Pb(2)- и Pb(3)-центрированных полиэдров и зигзагообразные цепочки, вытянутые вдоль оси b, из полиэдров Pb(1), соединённых между собой через общие рёбра. Приведён ИК-спектр фидлерита-1A.

Ключевые слова: фидлерит, фторид-хлорид свинца, античный шлак, Лаурион, кристаллическая структура, ИК-спектроскопия, водородные связи.

DOI: https://doi.org/10.31857/S0869-5652486183-87

Окрестности греческого города Лаурион, расположенного на полуострове Аттика, известны залежами полиметаллических руд, добыча которых происходила с некоторыми перерывами на протяжении около 5000 лет [1]. Наиболее активная эксплуатация рудных месторождений Лауриона приходится на два периода — с VI по III века до н.э. и с конца позапрошлого века до 1970-х гг. В античное время добыча руды производилась главным образом ради серебра (в подчинённом количестве извлекался и свинец), тогда как шлаки, содержащие другие рудные компоненты (остаточный Pb, а также Zn, Cu, As, Sb), в основном захоранивали в море. Взаимодействие различных компонентов шлаков с морской водой на протяжении более чем двух тысячелетий привело к образованию большого числа новых минеральных фаз. К настоящему времени их разнообразие в античных шлаках Лауриона превысило сотню, и в это число входит много редких и эндемичных минеральных видов, преимущественно относящихся к хлоридам, гидроксидам, арсенатам, арсенитам и сульфатам Pb, Cu, Fe, Zn, Ag.

Знание форм фиксации токсичных элементов (Pb, As, Cu и др.) в различных условиях важно с точки зрения проблемы их иммобилизации в промышленных отходах. Ранее нами в шлаках Лауриона были описаны хлорарсениты $Pb_5(As^{3+}O_3)$ Cl₇, $Pb_2(As^{3+}O_2OH)Cl_2$ и $Pb_6Cu^+(As^{3+}O_3)_2Cl_7$ [2–4]. Эти соединения содержат мышьяк и медь в низковалентных состояниях, не вполне обычных для минералов зоны гипергенеза рудных месторождений, что однозначно говорит о восстановительных условиях кристаллизации в системе металлургический шлак — морская вода. В настоящей работе приведены новые данные о фидлерите-1A из захоронённого в море шлакового отвала античных плавилен в Паха Лимани (Pacha Limani).

Фидлерит $Pb_3Cl_4F(OH) \cdot H_2O$ — редкий минерал преимущественно техногенного происхождения: в основном это вторичная фаза металлургических шлаков [1, 5–7]. Ранее из античных шлаков Лауриона был изучен фидлерит-2*M*, а в некоторых его кристаллах было отмечено присутствие вростков политипа 1*A* (неупорядоченные смешаннослойные срастания с преобладающим политипом 2*M*) [8]. Находка монокристаллов фидлерита-1*A* в шлаке из

¹Московский государственный университет им. М.В. Ломоносова

²Институт проблем химической физики

Российской Академии наук,

Черноголовка Московской обл.

³National and Kapodistrian University of Athens, Greece

^{*}E-mail: n.v.zubkova@gmail.com

Паха Лимани позволила уточнить его кристаллическую структуру, получить высококачественный ИК-спектр и сделать выводы о характере водородных связей. Фидлерит-1A образует в кавернах (газовых пузырях) преимущественно силикатного шлака бесцветные таблитчатые кристаллы размерами до 0,1×0,3×0,5 мм в тесной ассоциации со светло-жёлтыми толстотаблитчатыми и изометричными кристаллами фосгенита Pb₂(CO₃) Cl₂.

Химический состав фидлерита-1А изучен методом локального рентгеноспектрального анализа на сканирующем электронном микроскопе "Tescan Vega II" ХМU с энергодисперсионным спектрометром INCAx-sight (ускоряющее напряжение 15,7 кВ; ток зонда 0,5 нА). Найдено (среднее из трёх измерений, мас.%): Pb 76,46, Cl 17,34, F 2,24, сумма 96,04. Определение H₂O не производилось из-за недостаточного количества вещества. Эмпирическая формула, рассчитанная на три атома Pb с учётом баланса зарядов и данных рентгеноструктурного анализа (см. ниже): Pb_{3.00}Cl_{3.98}F_{0.96}(OH)_{1.06}·H₂O. Кристаллическая структура фидлерита-1А решена на монокристалле с размерами 0,04×0,09×0,28 мм. Трёхмерный набор дифракционных отражений получен при комнатной температуре с использованием монокристального дифрактометра Xcalibur S CCD на MoK_{α} -излучении $(\lambda = 0,71073 \text{ Å})$ для полной сферы обратного пространства в интервалах углов 0 от 2,61 до 26,37°. Обработка экспериментальных данных производилась с помощью пакета программ CrysAlis v. 1.171.37.34. Параметры триклинной элементарной ячейки, уточнённые с использованием 4380 отражений: a = 8,5741(7), b = 8,0480(5), c = 7,2695(4) Å, $\alpha =$ = 90,087(5), β = 102,126(6), γ = 103,424(6)°, V =

= 476,37(6) Å³, Z = 2. Структура определена на основе прямых методов в рамках пр. гр. *P*-1 и уточнена в анизотропном приближении тепловых колебаний атомов с использованием комплекса программ SHELX-97 [9]. Заключительный фактор расходимости *R* = 0,0750 для 1723 независимых отражений с *I* > 2 σ (*I*). Координаты атомов и параметры их тепловых смещений приведены в табл. 1.

Структура фидлерита-1А из Лауриона близка к ранее изученной структуре этого политипа из древних железорудных шлаков периода этрусков с побережья залива Баратти в регионе Тоскана, Италия [8]. Ка-тионы Pb²⁺ в трёх основных кристаллографически неэквивалентных позициях центрируют двухшапочные тригональные призмы (KЧ = 8) $Pb(1)F(H_2O)Cl_6$, $Pb(2)(OH)_2FCl_5$ и $Pb(3)(OH)F_2Cl_5$. Главным отличием изученного нами образца от итальянского фидлерита-1А является присутствие дополнительной позиции Рb', частично (на 10%) заполненной катионами Pb²⁺. Эта позиция располагается на расстоянии 2,97 Å от Pb(1), что делает невозможным их одновременное заселение. Уточнение коэффициента заселённости Pb(1) показало, что эта позиция заполнена на 90%. Рб' также центрирует двухшапочную тригональную призму Pb'(OH)(H₂O)Cl₆. Межатомные расстояния в структуре фидлерита-1А приведены в табл. 2. В структуре выделяются два основных фрагмента, чередующиеся вдоль оси а: (100) слои из чередующихся центрированных Pb(2)- и Pb(3)-полиэдров (рис. 1а) и зигзагообразные цепочки, вытянутые вдоль оси b, из полиэдров Pb(1), соединённых между собой через общие рёбра (полиэдры, центрированные слабозаселенной позицией Pb', образуют топологически идентичные цепочки, "вложенные"

Таблица 1. Координаты (x, y, z) атомов, параметры их тепловых смещений (U_{3KB} , Å²) и заселённости позиций (s.o.f.) в структуре фидлерита-1*A*

Позиция	x	У	z	$U_{ m eq}$	s.o.f.
Pb(1)	0,37024(11)	0,21458(12)	0,32535(13)	0,0208(4)	Pb _{0,903(5)}
Pb'	0,3705(9)	-0,2762(10)	0,3233(13)	0,018(3)	Pb _{0,097(5)}
Pb(2)	0,89593(10)	0,35231(10)	0,27289(12)	0,0210(5)	1
Pb(3)	0,90088(10)	0,84639(10)	0,25981(12)	0,0211(5)	1
Cl(1)	0,1925(7)	0,4209(8)	0,0843(8)	0,0248(13)	1
Cl(2)	0,3448(7)	0,4595(8)	0,6354(10)	0,0257(12)	1
Cl(3)	0,1951(7)	0,9226(8)	0,0913(8)	0,0261(13)	1
Cl(4)	0,3496(8)	0,9658(8)	0,6343(11)	0,0280(13)	1
F	0,9289(18)	0,8595(19)	0,612(2)	0,029(3)	F _{0,90} (OH) _{0,10}
O = OH	0,945(2)	0,364(2)	0,614(2)	0,020(3)	(OH) _{0,90} F _{0,10}
$Ow = H_2O$	0,5019(19)	0,7526(16)	0,9959(17)	0,029(5)	1

Pb(1) −F	2,632(13)	Pb(3) —O	2,444(17)
-Ow	2,769(13)	—F	2,517(16)
-Cl(3)	2,819(6)	—F	2,535(16)
-Cl(1)	2,865(6)	-Cl(3)	2,970(6)
-Cl(4)	3,016(6)	-Cl(2)	3,058(6)
-Cl(4)	3,048(6)	-Cl(4)	3,113(6)
-Cl(2)	3,067(6)	-Cl(1)	3,141(7)
-Cl(2)	3,108(6)	-Cl(3)	3,239(6)
Pb(2) −O	2,415(16)	Pb' — O	2,767(17)
-0	2,427(17)	-Cl(3)	2,780(10)
-F	2,555(14)	-Ow	2,827(16)
-Cl(2)	3,004(6)	-Cl(1)	2,905(11)
-Cl(1)	3,077(6)	-Cl(4)	2,999(10)
-Cl(4)	3,089(6)	-Cl(4)	3,042(11)
-Cl(1)	3,237(6)	-Cl(2)	3,096(9)
-Cl(3)	3,290(6)	-Cl(2)	3,118(10)

Таблица 2. Межатомные расстояния (Å) в структуре фидлерита-1*А*

в цепочки Pb(1) (рис. 1б)). Структура фидлерита-1А представлена на рис. 1в. Расположение позиций анионов F⁻ и OH⁻ получено в соответствии с принципом, предложенным в работе [8]: в позиции, окруженной по тетраэдру четырьмя катионами Pb²⁺, находится атом фтора, а в позиции, имеющей в соседстве три атома свинца с одной стороны — атом кислорода ОН-группы (при этом атом водорода, по-видимому, расположен в стороне, противоположной треугольнику из атомов Pb). Частично (на 10%) заселённая позиция Рb' располагается так, что достраивает до тетраэдра треугольное окружение позиции атома кислорода ОН-группы. Таким образом, в нашем случае эта анионная позиция заселена кислородом на 90% и фтором на 10%. Вхождение фтора в позицию ОН реализуется в том случае, когда заполнена позиция Pb'. Для позиции F ситуация аналогична: её заселенность атомами F равна 90%,

Рис. 1. Слой из центрированных Pb(2)- и Pb(3)-полиэдров (а), слой из центрированных Pb(1)- и Pb'-полиэдров (б) и чередование этих слоёв в структуре фидлерита-1*A* (проекция вдоль оси *b*) (в) (позиции Pb' показаны светло-серыми шариками).

ДОКЛАДЫ АКАДЕМИИ НАУК том 486 № 1 2019

Рис. 2. ИК-спектр фидлерита-1А.

что отвечает ситуации, когда заселена позиция Pb(1), а 10% от этой позиции занято атомами кислорода ОН-группы (в случае заполнения позиции Pb' и вакансии в позиции Pb(1)).

Инфракрасный спектр порошка фидлерита-1*A*, запрессованного в таблетку с KBr (рис. 2), снят на фурье-спектрометре ALPHA FTIR (Bruker Optics, Германия) в диапазоне волновых чисел 360– 3800 см⁻¹, при разрешающей способности 4 см⁻¹ и числе сканирований, равном 16. В качестве образца сравнения использовалась аналогичная таблетка из чистого KBr. Волновые числа полос поглощения (см⁻¹; s — сильная полоса, w — слабая полоса) и их отнесения следующие: 3545w, 3515s, 3482s (O–Hвалентные колебания молекул H₂O и OH-групп), 1592w (деформационные колебания молекул H₂O), 700 (плечо), 673s, 654, 592s (деформационные колебания Pb···O–H), 447 (либрационные колебания молекул воды).

Согласно известной корреляции между положением полосы O–H-валентных колебаний в ИК-спектре и расстоянием O···O между атомами кислорода группы-донора водородной связи и её акцептора [10], полоса при 3482 см⁻¹ соответствует величине O···O, равной 2,87 Å. С этой величиной хорошо согласуется расстояние OH···OH, равное 2,83(3) Å. Слабая полоса при 3545 см⁻¹ соответствует расстоянию OH···OH, равному 2,98 Å. Низкая интенсивность этой полосы говорит в пользу того, что она может быть отнесена к примесным OH-группам в позиции F: расстояние OH···OH_F равно 2,95(2) Å. Таким образом, наиболее интенсивную полосу O–H- валентных колебаний при 3515 см^{-1} следует отнести к молекулам H_2O , образующим слабые водородные связи с ионами CI^- .

Каждая ОН-группа имеет две степени свободы, связанные с деформационными колебаниями Pb···O–H. С учётом этого факта сильные полосы при 592 и 673 см⁻¹ отнесены к колебаниям гидроксильных групп в позиции OH, а слабые полосы при 654 и 700 см⁻¹ — к колебаниям примесных OH-групп в позиции F.

Источник финансирования. Работа выполнена при поддержке Российского научного фонда, грант № 14–17–00048.

СПИСОК ЛИТЕРАТУРЫ

- Gelaude P., Kalmthout P., Rewitzer C. Lavrion, the Minerals in the Ancient Slags. Nijmegen: Janssen Print, 1996. 194 p.
- Siidra O.I., Krivovichev S.V., Chukanov N.V., Pekov I.V., Magganas A., Katerinopoulos A., Voudouris P. // Mineral. Mag. 2011. V. 75. P. 337–345.
- Siidra O.I., Chukanov N.V., Pekov I.V., Krivovichev S.V., Katerinopoulos A., Voudouris P., Magganas A. // Mineral. Mag. 2012. V. 76. P. 597–602.
- Zubkova N.V., Chukanov N.V., Pekov I.V., Van K.V., Pushcharovsky D.Yu., Katerinopoulos A., Voudouris P., Magganas A. // Z. Kristallogr. – Crystalline Mat. 2015. V. 230. P. 145–149.
- Kolitsch U., Brandstätter F., Schreiber F., Fink R., Auer C. // Ann. Naturhist. Museums in Wien. 2013. V. A115. P. 19–87.

87

- Cerutti G., Preite D. // Lapis. 1995. V. 20. № 4. P. 13–18.
- BMS Newsletter 79. March 2010. http://britishmicro-mountsociety.homestead.com/Gannell-Smelter. html
- Merlino S., Pasero M., Perchiazzi N. // Mineral. Mag. 1994. V. 58. P. 69–78.
- 9. Sheldrick G.M. // Acta Cryst. 2008. V. A64. P. 112–122.
- Libowitzky E. // Monatsh. Chem. 1999. V. 130. P. 1047– 1059.

NEW DATA ON FIEDLERITE-1A FROM ANCIENT SLAGS OF LAVRION, GREECE: CRYSTAL STRUCTURE AND H-BONDING

N. V. Zubkova¹, N. V. Chukanov², Corresponding Member of the RAS I. V. Pekov¹, Academician of the RAS D. Yu. Pushcharovsky¹, A. Katerinopoulos³, P. Voudouris³, A. Magganas³

¹Lomonosov Moscow State University, Moscow, Russian Federation

²Institute of Problem of Chemical Physics of the Russian Academy of Science, Chernogolovka, Moscow region, Russian Federation

³National and Kapodistrian University of Athens, Greece

Received April 20, 2017

The crystal structure (R = 0.0750) of fiedlerite-1A Pb₃Cl₄F(OH) · H₂O from ancient slags of Lavrion (Greece) was studied on a single crystal. The mineral is triclinic, a = 8.5741(7), b = 8.0480(5), c = 7.2695(4) Å, ($\alpha = 90.087(5)$, ($\beta = 102.126(6)$, ($\gamma = 103.424(6)$) V = 476.37(6) Å³, Z = 2. Pb²⁺ cations centre bicapped trigonal prisms Pb(1)F(H₂O)Cl₆, Pb(2)(OH)₂FCl₅ and Pb(3)(OH)F₂Cl₅. Additional Pb' site with 10% occupancy was revealed in the structure. There are two basic structure fragments alternating along the a axis: (100) layers formed by Pb(2)- and Pb(3)-centred polyhedra and elongated along the b axis zig-zag chains formed by Pb(1)-centred polyhedra sharing common edges. IR spectrum of fiedlerite-1A is given.

Keywords: fiedlerite; lead fluoride chloride; ancient slag; Lavrion; crystal structure; IR-spectroscopy; hydrogen bonding.