= ФИЗИЧЕСКАЯ ₌ ХИМИЯ

УДК 536.63

ТЕПЛОЁМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ГЕРМАНАТОВ ErInGe₂O₇ И TbInGe₂O₇ В ОБЛАСТИ 350–1000 К

Л. Т. Денисова^{1,*}, член-корреспондент РАН А. Д. Изотов², Ю. Ф. Каргин³, Л. А. Иртюго¹, В. В. Белецкий¹, Н. В. Белоусова¹, В. М. Денисов¹

Поступило 10.01.2019 г.

Твердофазным синтезом из исходных оксидов многоступенчатым обжигом на воздухе в интервале температур 1273–1473 К получены ErInGe₂O₇ и TbInGe₂O₇.Высокотемпературная теплоёмкость этих оксидов измерена методом дифференциальной сканирующей калориметрии (350–1000 К). С использованием экспериментальных зависимостей $C_p = f(T)$ рассчитаны их термодинамические свойства.

Ключевые слова: германаты эрбия-индия и тербия-индия, дифференциальная сканирующая калориметрия, высокотемпературная теплоёмкость, термодинамические свойства.

DOI: https://doi.org/10.31857/S0869-56524862193-196

В последнее время внимание исследователей и практиков привлекают сложные оксидные соединения, описываемые общей формулой RMGe₂O₇ (R - редкоземельные элементы, M = Al, Ga, In, Fe)[1, 2]. Связано это с перспективами их использования в различных областях техники и науки в качестве квантовых генераторов, оптических преобразователей, люминофоров, рентгеновских люминесцентных экранов и др. [2, 3]. Известно, что германаты RMGe₂O₇ могут быть идентифицированы в двух типах кристаллической структуры: тортвейтитоподобной и тортвейтитовой [2]. К таким материалам относятся и германаты ErInGe₂O₇ и TbInGe₂O₇. Следует отметить, что они являются наименее исследованными из оксидных соединений RMGe₂O₇. Имеются только данные по структуре и люминесцентным свойствам TbInGe₂O₇ [1]. Сведения о теплоёмкости позволяют определить теплофизические свойства сложных оксидных соединений. В то же время для оптимизации условий синтеза и уточнения фазовых равновесий методами термодинамики требуются данные об их термодинамических свойствах. Это особенно важно, так как диаграммы состояния систем Er₂Ge₂O₇-In₂Ge₂O₇ и Tb₂Ge₂O₇-In₂Ge₂O₇ не построены.

²Институт общей и неорганической химии

им. Н.С. Курнакова Российской Академии наук, Москва ³Институт металлургии и материаловедения им. А.А. Байкова Российской Академии наук, Москва В настоящей работе впервые синтезировано соединение $ErInGe_2O_7$ и определена его структура. Впервые исследовано влияние температуры на молярную теплоёмкость германатов $ErInGe_2O_7$ и $TbInGe_2O_7$ в интервале 350–1000 К. Полученные данные позволили вычислить их термодинамические функции (изменения энтальпии, энтропии и приведённой энергии Гиббса).

Германаты ErInGe₂O₇ и TbInGe₂O₇ получали твердофазным синтезом из исходных оксидов. Их предварительно прокаливали при 1173 К и в стехиометрическом количестве перетирали в агатовой ступке и прессовали в таблетки. Затем последовательно обжигали на воздухе при температурах 1273 К(40 ч), 1373 К (100 ч) и 1473 К (60 ч). Учитывая, что достаточно высокие температуры твердофазного синтеза могут привести к частичному испарению GeO_2 [4], синтез проводили в тиглях с крышкой, а время синтеза и количество GeO2 сверх стехиометрии подбирали экспериментально. Контроль фазового состава полученных образцов проводили с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANflytical, Нидерланды, Си K_{α} -излучение). Регистрацию дифрактограмм выполняли высокоскоростным детектором PIXcel. Дифрактограммы синтезированных соединений показаны на рис. 1. Параметры решёток полученных германатов определены путём полнопрофильного уточнения методом минимизации производной разности [5].

Теплоёмкость $ErInGe_2O_7$ и TbInGe_ O_7 измеряли методом дифференциальной сканирующей калориметрии на приборе STA 449 C Jupiter ("NETZSCH",

¹Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск

^{*}E-mail: antluba@mail.ru

Рис. 1. Рентгенограммы $ErInGe_2O_7$ (а) и $TbInGe_2O_7$ (б) при комнатной температуре: 1 — экспериментальный; 2 — расчётный; 3 — разностный профили рентгенограмм; штрихи указывают расчётные положения рефлексов.

Германия) в интервале температур 350–1000 К. Методика экспериментов подобна описанной ранее [6, 7]. Полученные результаты обрабатывали с помощью пакета анализа "NETZSCH" Proteus Thermal Analysis и лицензионного программного инструмента "Systat Sigma Plot 12" ("Systat Software Inc", США). Ошибка экспериментов не превышала 2%.

Сведений о структуре германата ErInGe₂O₇ в литературе нет. По нашим данным, для него параметры элементарной ячейки таковы: пр. гр. *C*2/*c*, a = 6,8069(1) Å, b = 8,8657(2) Å, c = 9,8243(2) Å, $\beta = 101,858(1)^\circ$, V = 580,22(2) Å³. Для TbInGe₂O₇ нами получены следующие значения: пр.гр. *C*2/*c*, a = 6,8745(2) Å, b = 8,8651(3) Å, c = 9,8016(3) Å, $\beta = 101,380(1)^\circ$, V = 585,61(3) Å³. Эти результаты удовлетворительно согласуются с имеющимися для TbInGe₂O₇ данными [1]: a = 6,8812(2) Å, b = 8,8774(3) Å, c = 9,7892(4) Å, $\beta = 101,401(1)^\circ$, V = 586,25(4) Å³. Согласно [2] соединения ABGe₂O₇ (А и В — редкоземельные и трёхвалентные элементы, переходные металлы) могут кристаллизоваться в четырёх пространственных группах в зависимости от отношения ионных радиусов $r_{\rm B}/r_{\rm A}$. Для $r_{\rm B}/r_{\rm A} > 0,80$ реализуется пр. гр. C2/c, что наблюдается и для ErInGe₂O₇ и TbInGe₂O₇.

На рис. 2 показана температурная зависимость теплоёмкости $ErInGe_2O_7$ и $TbInGe_2O_7$. Видно, что с ростом температуры значения C_p закономерно увеличиваются, а на зависимостях $C_p = f(T)$ нет экстремумов, что, возможно, свидетельствует об отсутствии полиморфных превращений в исследованном интервале температур у этих оксидных соединений. Это позволяет описать полученные данные по влиянию температуры на теплоёмкость исследованных германатов классическим уравнением Майера—Келли

$$C_p = a + bT + T^{-2}, (1)$$

которое для ErInGe₂O₇ и TbInGe₂O₇ имеет вид

$$C_p = (245,31 \pm 0,37) + (32,40 \pm 0,40) \cdot 10^{-3}T - (39,39 \pm 0,39) \cdot 10^{5}T^{-2},$$
(2)

$$C_p = (261,31 \pm 0,58) + (9,47 \pm 0,60) \cdot 10^{-3}T - (41,70 \pm 0,63) \cdot 10^{5}T^{-2}.$$
 (3)

Коэффициенты корреляции для уравнения (2) и (3) равны 0,9997 и 0,9985 соответственно.

Рис. 2. Температурные зависимости молярной теплоёмкости $\text{Er}_2\text{Ge}_2\text{O}_7$ (1), TbInGe₂O₇ (2); точки экспериментальные данные, линии — расчёт по уравнениям (2) и (3).

ДОКЛАДЫ АКАДЕМИИ НАУК том 486 № 2 2019

<i>Т</i> , К	<i>С_p,</i> Дж/(моль · К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 К), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350 K), Дж/(моль · K)	Ф°(<i>T</i>) – Ф°(350 К), Дж/(моль · К)
ErInGe ₂ O ₇				
350	224,5	_	_	_
400	233,7	11,46	30,60	1,94
450	240,4	23,33	58,54	6,70
500	245,8	35,49	84,16	13,18
550	250,1	47,89	107,8	20,72
600	253,8	60,49	129,7	28,90
650	257,0	73,26	150,2	37,45
700	259,9	86,19	169,3	46,20
750	262,6	99,25	187,3	55,01
800	265,1	112,4	204,4	63,82
850	267,4	125,7	220,5	72,57
900	269,6	159,2	235,9	81,22
950	271,7	152,7	250,5	89,74
1000	273,7	166,4	264,5	98,13
TbInGe ₂ O ₇				
350	230,3	_	_	_
400	238,8	11,74	31,35	1,99
450	244,8	23,87	59,84	6,86
500	249,1	36,19	85,86	13,47
550	252,5	48,74	109,8	21,16
600	255,2	61,43	131,9	29,48
650	257,4	74,25	152,4	38,15
700	259,2	87,16	171,5	47,00
750	260,8	100,2	189,5	55,91
800	262,2	113,2	206,3	64,79
850	263,4	126,4	222,3	73,59
900	264,5	139,6	237,3	82,27
950	265,5	152,8	251,7	90,81
1000	266,4	166,1	265,3	99,20

Таблица 1. Термодинамические свойства ErInGe₂O₇ и TbInGe₂O₇

На основании уравнений (2) и (3) по известным термодинамическим соотношениям рассчитаны термодинамические функции $ErInGe_2O_7$ и TbInGe₂O₇. Эти результаты приведены в табл. 1. Из неё следует, что значения C_p при всех исследованных температурах не превышают предел Дюлонга–Пти 3*Rs*, где *R* — универсальная газовая постоянная, *s* — число атомов в формульной единице оксидного соединения.

На основании полученных нами значений теплоёмкости для $ErInGe_2O_7$ и $TbInGe_2O_7$ были рассчитаны значения характеристической температуры Дебая θ_D . Они оказались равными соответственно 705 и 700 К. При этом в первом приближении считали близкими C_p и C_V , а величины θ_D определяли аналогично [8]. Источники финансирования. Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017—2019 годы (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

СПИСОК ЛИТЕРАТУРЫ

- Juarez-Arellano E.A., Bucio L., Hernandez J.A., et al. // J. Solid State Chem. 2003. V. 170. P. 418–423.
- Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S., et al. //Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1-FF6.15.8.

ДЕНИСОВА и др.

- Compd. 2008. V. 460. P. 421-425.
- 4. Becker U.W., Felsche J. // J. Less-Common. Metals. 1987. V. 128. P. 269-280.
- 5. 749.
- 3. Chang Y.-S., Lin H-J., Chai Y.-L., et al. // J. Allovs 6. Денисов В.М., Денисова Л.Т., Иртюго Л.А. *u* ∂*p*. // ΦTT. 2010. T. 52. № 7. C. 1274–1277.
 - 7. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71.
 - Solovyov L.A. // J. Appl. Crystallogr. 2004. V. 37. P. 743- 8. Петьков В.И., Асабина Е.А., Суханов М.В. *u ∂p*. // ЖΦХ. 2013. T. 87. № 12. C. 2000–2008.

HIGH-TEMPERATURE HEAT CAPACITY ErInGe₂O₇ AND TbInGe₂O₇ **IN THE RANGE 350–1000 K**

L. T. Denisova¹, Corresponding Member of the RAS A. D. Izotov², Yu. F. Kargin³, L. A. Irtugo¹, V. V. Beletskiv¹, N. V. Belousova¹, V. M. Denisov¹

¹Siberian Federal University, Krasnovarsk, Russian Federation

²N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation

³Baykov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, Russian Federation

Received January 10, 2019

SmFeGe₂O₇ germanate was obtained by solid-state reactions from stoichiometric mixtures of starting oxides with multistage firing within 1273–1473 K. The effect of temperature on the heat capacity of the compound was studied using differential scanning calorimetry. Based on the dependence $C_p = f(T)$, its thermodynamic properties are calculated.

Keywords: erbium indium germanate, differential scanning calorimetry, terbium indium germanate, hightemperature heat capacity, thermodynamic properties.