——— ХИМИЯ =

УДК 544.015.3

ОГРАНИЧЕННЫЙ ТВЁРДЫЙ РАСТВОР Li(Ni_{0,33}Mn_{0,33}Co_{0,33})_{1-x}Fe_xO₂ СО СТРУКТУРОЙ α-NaFeO₂

М. Н. Смирнова^{1,*}, М. А. Копьева¹, Г. Д. Нипан¹, Г. Е. Никифорова¹, Ю. М. Вольфкович², Т. Л. Кулова², Н. Ф. Никольская²

Представлено академиком РАН Н.Т. Кузнецовым 18.10.2018 г.

Поступило 02.11.2018 г.

Исследованы составы Li(Ni_{0,33}Mn_{0,33}Co_{0,33})_{1-x}Fe_xO₂ (0 $\leq x \leq$ 1) концентрационного тетраэдра LiNiO₂–LiMnO₂–LiCoO₂–LiFeO₂. Для синтеза образцов использовался метод сжигания геля с крахмалом, применение которого позволило впервые получить беспримесный стабильный твёрдый раствор LiNi_{0,2}Mn_{0,2}Co_{0,2}Fe_{0,4}O₂ со слоистой кристаллической структурой типа α -NaFeO₂, используемый в качестве катодной матрицы литий-ионных аккумуляторов. Проведено электрохимическое тестирование гомогенного LiNi_{0,2}Mn_{0,2}Co_{0,2}Fe_{0,4}O₂ со служтаты расширяют представления о возможности насыщения железом Li(Ni,Mn,Co)O₂ со структурой α -NaFeO₂ и показывают целесообразность дальнейшего изучения объёма гомогенности и свойств твёрдого раствора Li(Ni,Mn,Co,Fe)O₂.

Ключевые слова: метод сжигания геля, твёрдые растворы, гомогенность, вхождение лития

DOI: https://doi.org/10.31857/S0869-56524863312-315

Методом рентгенофазового анализа исследованы образцы брутто-состава Li(Ni_{0,33}Mn_{0,33}Co_{0,33})_{1-x}Fe_xO₂ ($0 \le x \le 1$), полученные при сжигании геля с крахмалом. Выбранная методика синтеза позволила впервые получить беспримесный стабильный твёрдый раствор LiNi_{0,2}Mn_{0,2}Co_{0,2}Fe_{0,4}O₂ со слоистой кристаллической структурой типа α -NaFeO₂, используемый в качестве катодной матрицы литий-ионных аккумуляторов. Проведено электрохимическое тестирование гомогенного LiNi_{0,2}Mn_{0,2}Co_{0,2}Fe_{0,4}O₂ и образца с минимальным содержанием железа LiNi_{0,3}Mn_{0,3}Co_{0,3}Fe_{0,1}O₂.

Исследования твёрдых растворов (TP) системы Li–Ni–Mn–Co–Fe–O обусловлены поиском более дешёвых и экологически безопасных материалов для литий-ионных аккумуляторов (ЛИА). Введение оксида железа в кристаллиты системы Li–Ni–Mn– Co–O, используемые в катодах ЛИА [1], можно рас-

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской Академии наук, Москва

²Институт физической химии и электрохимии им. А.Н. Фрумкина Российской Академии наук, Москва

*E-mail: smirnova macha1989@mail.ru

сматривать как вариант решения поисковой задачи при условии сохранения фазового состава кристаллитов, которые представляют собой гомогенные TP и их смеси. В зависимости от температуры, парциального давления кислорода и соотношения катионов в системе Li–Ni–Mn–Co–O образуются TP со структурами галита (*Fm3m*): Li(Ni, Mn, Co)O, феррита α -NaFeO₂ (*R*-3*m*): Li(Ni, Mn, Co)O₂, манганита (*C*2/*m*): Li₂MnO₃ и шпинели (*Fd*3*m*): Li(Ni, Mn, Co)₂O₄. Концентрационный объём Li(Ni, Mn, Co)O₂, наиболее интересного TP с точки зрения ЛИА, способен в условном тетраэдре составов Li₂O–Ni₂O₃–Mn₂O₃–Co₂O₃ заполнить пространство между плоскостями Li_{0,35}(Ni, Mn, Co)O_{2–δ} и Li₁₂(Ni, Mn, Co)O_{2+δ} [2].

Отдельные попытки введения железа в Li(Ni, Mn, Co)O₂ ограничиваются получением TP составов с частичным замещением кобальта LiNi_{0,33}Mn_{0,33}Co_{0,17}Fe_{0,17}O₂ (золь-гель-синтез с использованием лимонной кислоты) [3] и LiNi_{0,6}Mn_{0,2}Co_{0,15}Fe_{0,05}O₂ (сжигание геля с сахарозой) [4] или с полным замещением только одного элемента Li(Li_{0,2}Mn_{0,4}Co_{0,2}Fe_{0,2})O₂ и Li(Li_{0,2}Mn_{0,4}Ni_{0,2}Fe_{0,2})O₂ (золь-гель синтез, лимонная кислота) [5]. Доля катионов железа не пре-

вышает 10%, и представляет интерес дальнейшее увеличение его содержания в ТР со слоистой структурой. С одной стороны, предельное содержание 50% достигается в LiFeO₂, но, с другой стороны, полиморфная модификация феррита лития со слоистой структурой существует метастабильно и образуется, например, при ионном обмене α -NaFeO₂ с раствором LiCl в органических растворителях при 160–200 °C [6].

Целью настоящей работы было максимальное насыщение железом Li(Ni, Mn, Co)O₂ при сохранении гомогенности TP со структурой α -NaFeO₂. В качестве исходного был выбран классический состав LiNi_{0,33}Mn_{0,33}Co_{0,33}O₂[7].

Для синтеза образцов использовался метод сжигания геля [8] и в качестве восстановителя применялся крахмал. После синтеза и охлаждения поликристаллы измельчали в шаровой мельнице и отжигали при 800 °C в течение 5 часов в муфельной лабораторной печи.

Рентгенофазовый анализ (РФА) порошков выполняли на дифрактометре Bruker Advance D8 (излучение Cu K_{α}) в интервале углов $2\theta = 10^{\circ} - 60^{\circ}$ с шагом сканирования 0,0133°. Обработка результатов проводилась с помощью программного пакета DIFFRAC.EVA с использованием оборудования ЦКП ФМИ ИОНХ РАН.

Электроды для электрохимического тестирования готовили по стандартной намазной технологии, аналогично описанной в [9]. Количество активного вещества на подложке составляло 2-3 мг/см². В качестве электролита использовали 1M LiPF₆ в смеси этиленкарбонат-диэтилкарбонат-диметилкарбонат (1:1:1). Содержание воды в электролите, измеренное методом кулонометрического титрования по Фишеру (917 Ti-Touch, Metrohm), не превышало 15 ppm. Тестирование электродов проводили методом циклической вольтамперометрии с помощью потенциостата P20-X8 ("Элинс", Россия). Скорость развёртки потенциала составляла 0,02 и 0,1 мВ/с.

На рис. 1 представлены данные РФА и результаты расшифровки для образцов $Li(Ni_{0,33}Mn_{0,33}Co_{0,33})_{1-x}Fe_xO_2$.

Рис. 1. Рентгенограммы образцов Li(Ni_{0,33}Mn_{0,33}Co_{0,33})_{1-x}Fe_xO₂ при различных *x*: 0 (LNMC),0,1 (*1*); 0,25 (*2*); 0,4 (*3*); 0,5 (*4*); 0,6 (*5*); 0,7 (*6*); 0,8 (*7*); 0,9 (*8*), 1 (*LF*). Отмечены рефлексы твёрдых растворов: **с** — кубический LiFeO₂, **s** — шпинель Li(Ni,Mn,Co,Fe)₂O₄, **a** — орторомбический Li(Ni,Mn,Co,Fe)₂O₄.

В системе Li-Ni-Mn-Co-O, при Li: (Ni + Mn ++ Co) \leq 1, в равновесии с Li(Ni, Mn, Co)O₂ (структура α -NaFeO₂) могут находиться шпинель Li(Ni, Mn, Co)₂O₄ и галит Li(Ni, Mn, Co)O [10]. Гомогенный концентрационный объём Li(Ni, Mn, Co)O₂ изменяется с температурой и парциальным давлением кислорода и в зависимости от изобарно-изотермических условий синтеза состав Li(Ni_{0 33}Mn_{0 33}Co_{0 33})O₂ может или принадлежать TP со структурой α -NaFeO₂, или находится за его пределами. При добавлении железа образуется концентрационный объём Li(Ni, Mn, Co, Fe)O2 с новыми границами гомогенности по катионам. Для выбранной методики синтеза при заданном номинальном составе LiNi_{0,33}Mn_{0,33}Co_{0,33}O₂, наряду со слоистой фазой, образуется примесь шпинели (рис. 1, *LNMC*), которая сохраняется в образцах LiNi_{0.3}Mn_{0.3}Co_{0.3}Fe_{0.1}O₂ и LiNi_{0.25}Mn_{0.25} Co_{0.25}Fe_{0.25}O₂ (рис. 1, 1 и 2), но исчезает в образце LiNi_{0.2}Mn_{0.2}Co_{0.2}Fe_{0.4}O₂ (рис. 1, 3). Если представить этот результат в рамках тетраэдра псевдочетырёхкомпонентной системы LiNiO2-LiMnO2-LiCoO2-LiFeO₂ (рис. 2), то нода, соединяющая состав $LiNi_{0.33}Mn_{0.33}Co_{0.33}O_2$ (центр основания тетраэдра LNMC) с LiFeO₂ (вершина тетрадра), касается объёма гомогенности Li(Ni, Mn, Co, Fe)O₂ вблизи состава LiNi_{0.2}Mn_{0.2}Co_{0.2}Fe_{0.4}O₂ (точка 3). Тетраэдр LiNiO₂-LiMnO₂-LiCoO₂-LiFeO₂ не позволяет представить многофазные равновесия с участием Li(Ni, Mn, $Co)_2O_4$ и Li(Ni, Mn, Co)O, но с его помощью можно

Рис. 2. Концентрационный тетраэдр системы LiNiO₂-LiMnO₂-LiCoO₂-LiFeO₂. Отмечены твёрдые растворы Li(Ni_{0,33}Mn_{0,33}Co_{0,33})_{1-x}Fe_xO₂ при x = 0 (*LNMC*), x = 0,1 (*I*); x = 0,25 (*2*); x = 0,4 (*3*); x = 0,5 (*4*); x = 0,6 (*5*); x = 0,7 (*6*); x = 0,8 (*7*); x = 0,9 (*8*).

оценить положение однофазного объёма Li(Ni, Mn, Co, Fe)O₂. При движении по ноде к LiFeO₂ (рис. 2) увеличение содержания железа в Li(Ni_{0,33}Mn_{0,33} Co_{0,33})_{1-x}Fe_xO₂ (x = 0.5; 0,6; 0,7; 0,8; 0,9) приводит к появлению, наряду со шпинелью Li(Ni, Mn, Co)₂O₄, кубической модификации LiFeO₂ (рис. 1, 4-8). Параметры элементарной кристаллической ячейки для беспримесного образца LiNi_{0,2}Mn_{0,2} Co_{0,2}Fe_{0,4}O₂ с ромбоэдрической структурой α -NaFeO₂ составляют: a = 2,88 Å и c = 14,34 Å.

На рис. 3 представлены циклические вольтамперограммы (ЦВА) Li(Ni_{0.33}Mn_{0.33}Co_{0.33})_{1-x}Fe_xO₂ (x = 0, 1; 0, 4). Анодная ветвь вольтамперограммы соответствует экстракции ионов лития из $Li(Ni_{0.33}Mn_{0.33}Co_{0.33})_{1-x}Fe_xO_2$, катодная — внедрению ионов лития. Теоретическая разрядная ёмкость Li(Ni_{0.33}Mn_{0.33}Co_{0.33})_{1-x}Fe_xO₂, рассчитанная по закону Фарадея, составляет около 280 мАч/г. Однако на практике из-за структурных изменений при внедрении-экстракции лития и замедленности этого процесса вследствие твердофазной диффузии лития разрядная ёмкость не превышает 160 мАч/г [11, 12]. Как показало предварительное тестирование, при скорости развёртки потенциала 0,1 мВ/с разрядная ёмкость образца LiNi_{0.2}Mn_{0.2}Co_{0.2}Fe_{0.4}O₂ составила около 68 мАч/г. Образец LiNi_{0.3}Mn_{0.3}Co_{0.3}Fe_{0.1}O₂ показал величину разрядной ёмкости около

Рис. 3. Циклические вольтамперограммы Li(Ni_{0,33} $Mn_{0,33} Co_{0,33})_{1-x}Fe_xO_2$ при x = 0,4 (1) и 0,1 (2). Скорость развертки потенциала v 0,1 мВ c⁻¹. На врезке — ЦВА LiNi_{0,3}Mn_{0,3}Co_{0,3}Fe_{0,1}O₂ при v = 0,02 мВ c⁻¹.

ДОКЛАДЫ АКАДЕМИИ НАУК том 486 № 3 2019

110 мАч/г. При уменьшении скорости развёртки потенциала до 0,02 мВ/с разрядная ёмкость образца LiNi_{0,3}Mn_{0,3} Co_{0,3}Fe_{0,1}O₂ увеличивалась до 152 мАч/г. Увеличение разрядной ёмкости при уменьшении скорости развёртки потенциала свидетельствует о лимитировании процесса внедрения-экстракции лития диффузией лития в твёрдую фазу.

Полученный предварительный результат позволяет надеяться, что дальнейшее изучение концентрационного объёма гомогенности Li(Ni, Mn, Co, FeO₂ приведёт к составам с большим содержанием железа, которые по электрохимическим характеристикам будут сравнимы или превзойдут NaNi_{0.25}Mn_{0.25}Co_{0.25}Fe_{0.25}O₂ [13].

Источник финансирования. Работа выполнена в рамках государственного задания ИОНХ РАН и ИФХЭ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Кулова Т.Л., Скундин А.М.* // Электрохимия. 2016. Т. 52. № 6. С. 563–588.
- 2. *Нипан Г.Д., Клындюк А.И.* // Неорган. материалы. 2019. Т. 55. № 2. С. 154–160.

- 3. *Meng Y.S., Wu Y.W., Hwang B.J., et al.* // J. Electrochem. Soc. 2004. V. 151. № 8. P. A1134-A1140.
- 4. *El Mofid W.* // Dissertation. Synthesis and Characterization of Novel Cathode Material with Improved Specific Capacity and Safety for Lithium Ion Batteries. Techn. Univ. Ilmenau. 2016. 121 p.
- Li J., Chen J., Li J., et al. // Int. J. Electrochem. Sci. 2015. V. 10. P. 838–847.
- 6. *Hirayama M., Tomita H., Kubota K., et al.* // Mat. Res. Bull. 2012. V. 47. № 1. P. 79–84.
- Ohzuku T., Makimura Y. // Chem. Lett. 2001. V. 30. № 7. P. 642–643.
- 8. Смирнова М.Е., Копьева М.А., Береснев Э.Н. // ЖНХ. 2018. Т. 63. № 10. С. 1257—1261.
- 9. Сафронов Д.В., Новикова С.А., Кулова Т.Л., Скундин А.М., Ярославцев А.Б. // Неорган. материалы. 2012. Т. 48. № 5. С. 598-605.
- Brown C.R., McCalla E., Watson C., Dahn J.R. // ASC Comb. Sci. 2015. V. 17. P. 381–391.
- 11. *Wang Q., Tian N., Xu K, Han L., You C.* // J. Alloys and Compounds. 2016. V. 686. P. 267–272.
- M. Al-Shroofy, Zhang Q., Xu J., Chen T., Cheng Y.-T. // J. Power Sources. 2017. V. 352. P. 187–193.
- 13. *Li X., Wu D., Zhou Y.-N., et al.* // Electrochem. Commun. 2014. V. 49. P. 51–54.

LIMITED SOLID SOLUTION Li(Ni_{0,33}Mn_{0,33}Co_{0,33})_{1-x}Fe_xO₂ WITH STRUCTURE α-NAFEO₂ M. N. Smirnova¹, M. A. Kop'eva¹, G. D. Nipan¹, G. E. Nikiforova¹, Y. M. Volfkovich¹, T. L. Kulova², N. F. Nikol'skaya²

¹Kurnakov Institute of General & Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation

²Frumkin Institute of Physical Chemistry & Electrochemistry of the Russian Academy of Sciences, Moscow, Russian Federation

Presented by Academician of the RAS N.T. Kuznezov October 18, 2018

Received January 25, 2019

In the framework of this work, the compositions Li $(Ni_{0.33}Mn_{0.33}Co_{0.33})_{1-x}Fe_xO_2$ ($0 \le x \le 1$) of the tetrahedron LiNiO₂-LiMnO₂-LiCoO₂-LiFeO₂ were investigated. The samples were synthesized by the gel combustion method with starch. For the first time it was obtained without admixtures LiNi_{0.2}Mn_{0.2}Co_{0.2}Fe_{0.4}O₂ solid solution with a layered crystalline structure α -NaFeO2, which can be used as a cathode material of lithium-ion batteries. An electrochemical testing of the homogeneous sample LiNi_{0.2}Mn_{0.2}Co_{0.2}Fe_{0.4}O₂ and the sample with a minimum iron content LiNi_{0.3}Mn_{0.3}Co_{0.3}Fe_{0.1}O₂ was conducted. The results show feasibility of further studying the homogeneity region and the properties of the solid solution Li (Ni, Mn, Co, Fe)O₂.

Keywords: gel combustion method, solid solutions, homogeneity, lithium insertion.