———— ГЕОХИМИЯ —

УДК 550.42:543.51

МУЛЬТИИЗОТОПНЫЙ СОСТАВ СЕРЫ СУЛЬФИДОВ И МИКРОФОССИЛИИ МЕЗОАРХЕЙСКОГО КОЛЧЕДАННОГО РУДОПРОЯВЛЕНИЯ ЛЕКСА КАРЕЛЬСКОГО КРАТОНА: НОВЫЕ ДАННЫЕ О РОЛИ АБИОГЕННЫХ И БИОГЕННЫХ ФАКТОРОВ ПРИ ФОРМИРОВАНИИ ДРЕВНЕЙШИХ РУД

С. В. Высоцкий^{1,*}, академик РАН А. И. Ханчук¹, Л. В. Кулешевич², А. В. Игнатьев¹, А. И. Слабунов², Т. А. Веливецкая¹

Поступило 06.11.2018 г.

Приводятся первые данные о мультиизотопном составе серы сульфидов и фоссилизированных микроорганизмах, впервые обнаруженнных в мезоархейских (около 2,9 млрд лет) СКМ Карельского кратона. В результате детального электронно-микроскопического и микрозондового исследования выявлено присутствие в осадочных породах рудопроявления Лекса нескольких разновидностей предполагаемых микрофоссилий — силикатных кокоидов, пирит-марказитовых сфероидов и полых трубок. Показано, что изотопный состав серы коррелирует с типоморфными особенностями сульфидов, их составом и свидетельствует о существенном участии осадочной серы в колчеданном рудообразовании. Процесс осаждения сульфида железа происходил при активном биологическом участии.

Ключевые слова: изотопы серы, сульфиды, микрофоссилии, мезоархей, Карелия.

DOI: https://doi.org/10.31857/S0869-56524855599-603

Формирование колчеданных руд происходит на Земле с архея по настоящее время. При этом их важнейший компонент — сера может иметь три источника: магматический, осадочный и сульфат морской воды. Исследования современных гидротермальных систем на морском дне, которые рассматриваются в качестве рудогенерирующих для древнейших колчеданных месторождений, показали, что магматическая сера и сульфат морской воды вносят основной вклад в общий бюджет серы в рудообразовании [1–3]. Также широко обсуждается влияние простейших форм жизни на процессы рудообразования, что особенно актуально и дискуссионно для архея. Однако наше понимание процессов, протекавших на ранней стадии развития Земли, ограничено наличием хорошо сохранившихся геологических образцов, так как большинство архейских пород испытало некоторую степень метаморфических изменений.

В данном сообщении мы приводим первые данные о мультиизотопном составе серы сульфидов мезоархейского (около 2,9 млрд лет) колчеданного рудопроявления Лекса, которые однозначно свидетельствуют о вкладе осадочной серы при его формировании. Вместе с тем мы сообщаем о фоссилизированных микроорганизмах, также впервые обнаруженных в этих уникально слабо метаморфизованных рудах.

Сумозерско-Кенозерский зеленокаменный пояс, в Каменноозерской структуре которого находится рассматриваемое рудопроявление Лекса (63,1486° с.ш., 36,3014° в.д.), расположен в юговосточной части Карельского кратона [4]. Он представляет собой систему тектонических пластин, сложенных относительно слабо метаморфизованными вулканогенно-осадочными образованиями, надвинутыми на Водлозерский блок тоналит-трондьемитовых гнейсов и гранитов, частично перекрытых породами палеопротерозоя [5]. В строении мезоархейского зеленокаменного комплекса Каменноозерской структуры выделяют две тектонически совмещенные толщи — мафит-ультрамафитовая (нижняя) и базальт-андезит-риолит-дацитовая (верхняя) [6]. Характерной составляющей верхней толщи являются горизонты колчеданных руд, послужившие объектом исследования.

На основании геохимических особенностей вулканитов сформулировано предположение о том, что рассмотренные толщи зеленокаменного пояса сформировались в разных геодинамических обстановках.

¹ Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

² Институт геологии Карельского научного центра

Российской Академии наук, Петрозаводск

^{*}E-mail: vysotskiy@fegdi.ru

Мафит-ультрамафитовая последовательность образовалась в океанических условиях и трактуется как океаническое плато с возрастом ~2,9 млрд лет: ее возраст (Sm–Nd изохронный) оценивается в 2916 ± \pm 117 млн лет, а метабазальтов (206 Pb/ 204 Pb- 207 Pb/ 204 Pb) — 2892 \pm 130 млн лет [6].

Формирование кислых вулканитов верхней толщи связывается с субдукционными процессами в островодужной обстановке. Время становления риолитов БАРД- и адакитовой серий соответственно оценивается (U–Pb TIMS по цирконам) в 2875 \pm 2 млн лет и 2876 \pm 5 млн лет [6]. Колчеданные руды, также как и углеродсодержащие осадки (сланцы), тесно связаны со среднекислыми островодужными вулканитами Каменноозерской структуры, что позволяет предположить их отложение в подводных условиях задуговых бассейнов островодужной системы.

Исследованные нами образцы были отобраны из керна скважин колчеданного рудопроявления Лекса. Колчеданные руды образуют здесь две линзовидные залежи мощностью до 50 м с содержанием сульфидов 30—70%. Вмещающие породы сложены кварц-хлорит-серицитовыми и углеродсодержащими сланцами. Толща слабо дислоцирована и метаморфизована в условиях зеленосланцевой фации, в породах и рудах сохраняются первичные текстуры, хотя и появляются минералы новых генераций. В отдельных зонах встречаются фрагменты, сохранившие минеральный состав диагенетической стадии.

В наименее преобразованных образцах сульфиды представлены пиритом и марказитом. На участках, подвергшихся зеленосланцевому метаморфизму, появляются пирротин, халькопирит, сфалерит, галенит. С учётом приуроченности исследованных колчеданных руд к верхней толще возраст их формирования соответствует, вероятно, возрасту риолитов БАРД-серии 2875 ± 2 млн лет.

В образцах нами выделяются две основные ассоциации дометаморфического осадочного бисульфида железа: а) сингенетические пирит-марказитовые конкреции, которые, как считается, образуются на границе раздела осадок—вода, и б) диагенетический пирит, который формируется ниже этого раздела в осадке.

Морфологически конкреции являются округлыми, овальными, эллипсоидальными стяжениями с концентрической зональностью (рис. 1). Эта зональность образована чередованием слоев массивного пирита и тонкопластинчатого марказита, часто образующего звёздчатые скопления. Кристаллы марказита цементируются смесью хлорита (шамозит), серицита (мусковит) и кварца, иногда с примесью углерода. Небольшие конкреции не имеют зональности и целиком сложены либо тонкопла-

Рис. 1. Зональная сульфидная конкреция (полированный аншлиф, отражённый свет). Зональность образована чередованием слоёв массивного пирита и тонкопластинчатого марказита. Оолит обрастает прерывистой каёмкой пирита. Цифры возле кратеров лазерной абляции соответствуют номерам анализов в табл. 1.

стинчатыми и игольчатыми кристаллами марказита, либо пиритом.

Диагенетический пирит представлен небольшими идиоморфными микрокристаллами пирита и "замещающим" пиритом. Идиоморфный пирит образует россыпь единичных мелких изометричных кристаллов, небольшие сростки и прослои во вмещающих породах, а также каймы вокруг конкреций. "Замещающий" пирит в прослоях углеродистых сланцев образует скопления пирит-марказитовых глобул (размером 10-45 мм), в которых только тонкая оболочка образована бисульфилом железа. а внутренняя часть выполнена кварцем, шамозитом или серицитом. Исторически к таким структурам применяется термин "минерализованные бактерии", которые были интерпретированы как пиритизированные бактериальные колонии или остатки примитивных форм жизни [7].

Определения изотопов серы в сульфидах месторождения Лекса были проведены в конкрециях и идиоморфных пиритах в лаборатории стабильных изотопов аналитического центра ДВГИ ДВО РАН локальным лазерным методом [8]. Интервал полученных значений δ^{34} S и δ^{33} S ассоциируется с типоморфными особенностями сульфидов и их составом (табл. 1). Идиоморфные кристаллы пирита показали узкий диапазон вариаций δ^{34} S между 5.2 и 7.0‰. Выявлено, что эти кристаллы имеют аномальное обогащение по изотопу ³³S, магнитуда изотопной аномалии серы Δ^{33} S достигала +2,64‰. Наличие изотопной аномалии указывает на то, что данные сульфиды содержат серу, вовлеченную в цикл фотохимических преобразований в бескислородной архейской атмосфере. Согласно концептуальной модели [9], атмосферная фотохимия с участием вулканических газов SO₂ приводит к масс-независимому фракционированию изотопов серы в продуктах реакций, таких как элементарная сера S₈ с положительной аномалией Δ^{33} S и H_2 SO₄ с отрицательной аномалией Δ^{33} S. Впоследствии эти компоненты серы осаждаются из атмосферы и включаются в (био) геохимические процессы в морской среде с образованием сульфидов, которые могут сохранить первичный сигнал масс-независимого фракционирования. Поэтому обнаруженный нами сигнал масснезависимого фракционирования изотопов серы в проанализированных кристаллах пирита однозначно указывает на осадочный генезис серы. Отношение между δ^{33} S и δ^{34} S в кристаллах также подтверждает осадочный источник серы. Величины δ³³S и δ^{34} S (рис. 2) лежат на линии масс-независимого фракционирования с наклоном δ^{33} S/ δ^{34} S $\approx 0,925$, что свидетельствует о вовлечении серы, прошедшей фотохимический цикл атмосферных преобразований, в процесс формирования колчеданного рудообразования.

Следует отметить, что наиболее интересные вариации изотопов серы были обнаружены в конкрециях. В отличие от идиоморфных кристаллов, значения δ^{34} S в конкрециях варьируют в широком диапазоне. Благодаря применению локального лазерного метода удалось установить, что величины δ^{34} S (см. табл. 1) изменяются от –9,8 до +27,5% в пределах конкреции. Кроме того, в отличие от кристаллов, в конкрециях был обнаружен слабый сигнал изотопной аномалии серы (Δ^{33} S \approx 0,4), который проявился только в средней части зональной конкреции, но исчезал в остальных зонах. Широкий диапазон δ^{34} S значений можно рассматривать как результат деятельности сульфатредуцирующих бак-

№ п/п	Анализированный минерал	$\delta^{33}S$	$\delta^{34}S$	Δ^{33} S
1	Пирит	0,3	0,5	0,00
2		-0,9	-1,8	0,00
3	Марказит	1,5	3,0	-0,01
4		8,3	16,2	-0,01
5		14,5	27,5	0,44
6		12,9	24,5	0,33
7		7,9	15,4	-0,01
8	Пирит	-3,4	-6,7	0,05
9	Кристаллы	4,2	5,2	1,55
10	идиоморфного пирита	3.9	4.6	1.55

Таблица 1. Содержание изотопов серы зональной конкреции в образце С1-75 из колчеданного рудопроявления Лекса

Примечание. Номера анализов в табл. 1 соответствуют номерам на рис. 1.

Рис. 2. Соотношение изотопов серы в сульфидах проявления Лекса. Образец С1-75.

терий. Процесс биогенной сульфат-редукции ассоциируется с фракционированием изотопов серы. магнитуда изотопного фракционирования может достигать 60-70‰ по отношению к сульфату морской воды [10]. В нашем случае можно предположить, что деятельность сульфатредуцирующих бактерий была довольно активной, на что указывает не только магнитуда δ^{34} S (~37‰), но и нивелирование изотопной аномалии серы (Δ^{33} S \approx 0). Полученные нами значения δ^{33} S и δ^{34} S в конкрециях ложатся на линию с коэффициентом наклона ~0.519 (см. рис. 2), что весьма близко к наклону 0,515 для линии масс-зависимого фракционирования серы. Сохранение первоначального сигнала масс-независимого фракционирования серы в осадочных сульфидах возможно при условии относительно слабой интенсивности биологического цикла серы. Это условие связано с предотвращением изотопной гомогенизации сульфидов, которое может иметь место в процессе биологического восстановления компонентов серы в морской воде (11). Таким образом, мы предполагаем, что биологическая сульфат-редукция была существенной составляющей в процессе формирования мезоархейского колчеданного рудопроявления Лекса.

В результате детального электронно-микроскопического и микрозондового исследования выявлено присутствие в осадочных породах рудопроявления Лекса нескольких разновидностей предполагаемых микрофоссилий (рис. 3). Среди них встречаются различные формы.

Коккоидные формы диаметром 2–3 мкм с неровной, шероховатой поверхностью, с короткими игольчатыми выступами (рис. 3а). По данным микроанализа, кокоиды имеют преимущественно кремнистый состав и морфологически аналогичны кокоидам, описанным в [12], выделенным из туфогенно-осадочных пород северной части Хизоваарской зеленокаменной структуры.

Сфероиды, представляющие собой пирит-марказитовые оболочки диаметром от 1–2 до 10 мкм (рис. 3б), редко больше, округлой и субсферической формы, одиночные или образующие скопления, толстостенные, с зубчатой скульптурой оболочек. По данным микрозондового анализа, ядро внутри оболочек выполнено силикатными минералами кварцем, хлоритом (шамозит), мусковитом или их смесью. Они различаются по форме, размеру и положению от индивидуума к индивидууму.

Полые трубки и их фрагменты (рис. 3в), длиной до 20 мкм, которые представляют собой замещённые пирит-марказитом, неразветвлённые нити (волокна). Вполне вероятно, что часть округлых пиритовых выделений, отнесённых к сфероидам, является перпендикулярным срезом таких трубок. Найденные микрообразования морфологически идентичны силикатным трубчатым структурам, описанным в мезоархейских силицитах [13].

Наблюдение с помощью сканирующей электронной микроскопии в сочетании с энергодисперсионным рентгеновским анализом указывает на то, что матрица, в которой сохраняются сульфидизированные микрофоссилии, представлена силикатными минералами. Шамозит и мусковит являются минеральными фазами, образующимися в восстановительных условиях и преимущественно нейтральной рН в окружающей среде во время образования [14]. Поэтому их связь с микроорганизмами может быть

Рис. 3. Фотографии микрофоссилий. а — силикатный кокоид с неровной шероховатой поверхностью и игольчатыми выступами (*I*) и вертикальный срез фрагмента пиритизированной полой трубки (*2*). Естественный скол породы. б — скопление фрагментов пиритизированных сфероидов и полых трубок в хлорит-серицит-кварцевом цементе вмещающего углеродистого сланца. В верхней части видно несколько единичных идиоморфных кристаллов пирита. Полированный аншлиф. в — увеличенный фрагмент пиритизированной трубки с небольшим боковым ответвлением.

косвенным доказательством существования последних в бескислородной среде. Как правило, осаждение силикатов и оксидов металлов различными штаммами свободноживущих гетеротрофных бактерий и цианобактерий является хорошо известным явлением, в частности, в металлонасыщенных, от слабокислых до нейтральных, средах [15].

Таким образом, мультиизотопный состав серы сульфидов в уникально слабо метаморфизованных породах мезоархейского рудопроявления Лекса играет решающую роль в понимании рудоформирующих процессов. Изотопные данные свидетельствует как о вовлечении фотолитической серы в процесс формирования сульфидов, так и о существенной роли биологической сульфатредукции в это время. Процесс осаждения сульфида железа происходил при активном биологическом участии, на что указывают сульфидизированные микрофоссилии.

Благодарности. Авторы благодарят анонимных рецензентов, чьи критические замечания улучшили статью.

Источники финансирования. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 17–05–00469, а также является вкладом в исследования по теме АААА–А18–118020290085–4.

СПИСОК ЛИТЕРАТУРЫ

1. Бортников Н.С., Викентьев И.В. // Геология руд. месторождений. 2005. Т. 47. № 1. С. 16-50.

- Huston D.L., Brauhart C.W., Drieberg S.L., et al. // Geology. 2001. V. 29. № 8. P. 687–690.
- 3. *Farquhar J., Wu N.P., Canfield D.E., et al.* // Econ. Geol. 2010. V. 105. № 3. P. 509–533.
- 4. Слабунов А.И., Лобач-Жученко С.Б., Бибикова Е.В. и др. // Геотектоника. 2006. № 6. С. 3–32.
- Кулешевич Л.В., Фурман В.Н., Федюк З.Н. // Геология и полезные ископаемые Карелии. Петрозаводск, 2005. В. 8. С. 50–67.
- Puchtel I.S., Hofmann A.W., Amelin Yu.V., et al. // Geochim. et Cosmochim. Acta. 1999. V. 63. № 21. P. 3579–3595.
- 7. Schidlowski M. // Nature. 1965. V. 205. P. 895–896
- Ignatiev A.V., Velivetskaya T.A., Budnitskiy S.Y., et al. // Chem. Geol. 2018. V. 493. P. 316–326.
- Ono S., Eigenbrode J.L., Pavlov A.A., et al. // Earth and Planet. Sci. Lett. 2003. V. 213. P. 15–30.
- Canfield D.E., Farquhar J., Zerkle A.L. // Geology. 2010. V. 38. P. 415–418.
- Halevy I. // Proc. Nat. Acad. Sci. USA. 2013. V. 110. № 44. P. 17644–17649.
- Астафьева М.М., Герасименко Л.М., Гептнер А.Р. и др. Ископаемые бактерии и другие микроорганизмы в земных породах и астроматериалах. М.: ПИН РАН, 2011. 172 с.
- 13. *Медведев П.В., Светов С.А., Светова А.И.* // Тр. Карел. науч. центра РАН. 2014. № 1. С. 135–147.
- 14. *Merino E., Harvey C., Murray H.H.* // Clays and Clay Minerals. 1989. V. 37. № 2. P. 135–142.
- Konhauser K.O., Phoenix V.R., Bottrell S.H., et al. // Sedimentology. 2001. V. 48. P. 415–433.

THE MULTI-ISOTOPE COMPOSITION OF SULFUR IN SULFIDES AND MICROFOSSILS OF THE MESOARCHEAN LEKSA PYRITE ORE OCCURRENCE OF THE KARELIAN CRATON: NEW DATA ON ABIOGENIC AND BIOGENIC EFFECTS ON THE FORMATION OF ANCIENT ORES S. V. Vysotskii¹, Academician of the RAS A. I. Khanchuk¹, L. V. Kuleshevich², A. V. Ignat'iev¹, A. I. Slabunov², T. A. Velivetskava¹

¹ Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russian Federation ² Institute of Geology, Karelian Research Center of the Russian Academy of Sciences, Petrozavodsk, Russian Federation

Received November 6, 2018

The first data on the multi-isotopic composition of sulfur of sulphides and fossilized microorganisms, first discovered in Mesoarchean (about 2.9 billion years) SCM of the Karelian Craton, are given. As a result of detailed electron-microscopic and microprobe studies, the presence of several varieties of suspected microfossils — silicate cocoids, pyrite-marcasitic spheroids, and hollow tubes — was found in sedimentary rocks of the Lex's ore occurrence. It is shown that the isotopic composition of sulfur correlates with the typomorphic features of sulfides, their composition and indicates a significant participation of sedimentary sulfur in pyrite ore formation. The process of deposition of iron sulfide occurred with active biological participation.

Keywords: sulfur isotope, sulfides, fossilized microorganisms, Mesoarchean, Karelian Craton.

ДОКЛАДЫ АКАДЕМИИ НАУК том 485 № 5 2019