УДК 551.2.08(571.62)

ИЗОТОПНЫЙ СОСТАВ ГАФНИЯ ЦИРКОНОВ КОНДЁРСКОГО КЛИНОПИРОКСЕНИТ-ДУНИТОВОГО МАССИВА (ХАБАРОВСКИЙ КРАЙ, РОССИЯ)

И. Ю. Баданина^{1,*}, Е. А. Белоусова², К. Н. Малич¹

Представлено академиком РАН В.А. Коротеевым 04.04.2017 г.

Поступило 24.04.2017 г.

Впервые охарактеризованы особенности начального изотопного состава гафния цирконов дунитов Кондёрского массива, с которым связаны промышленные россыпные месторождения платины. Широкие вариации ϵ Hf(*t*) (от $-8,4 \pm 0,8$ до $10,5 \pm 1,3$) в мезозойских цирконах свидетельствуют о взаимодействии "ювенильного" мантийного источника (ϵ Hf(*t*) = \sim +15) с производными других источников, эквивалентных субконтинентальной литосферной мантии и/или континентальной коре. Особенности изотопного состава гафния докембрийских цирконов (ϵ Hf(*t*) от -2,3 до +0,3) не противоречат выводу об их ксеногенной природе и вероятном заимствовании из пород фундамента Сибирской платформы.

Ключевые слова: циркон, дунит, Hf-изотопный состав, источники вещества, Кондёрский массив.

DOI: https://doi.org/10.31857/S0869-56524865588-592

Циркон обладает уникальной особенностью сохранять изотопно-геохимические метки наиболее ранних событий, относящихся ко времени образования пород и их источников. В данном контексте для более строгой оценки эволюции вещественного источника и времени его отделения от деплетированной мантии использование Lu—Hf-систематики является ключевой. В настоящем сообщении представлены первые результаты определения изотопного состава гафния цирконов из дунитов Кондёрского платиноносного массива, с которым связаны промышленные россыпные месторождения платины [6, 7, 9 и др.].

Концентрически-зональное строение Кондёрского массива [1, 3, 7 и др.], а также геологические взаимоотношения пород, наблюдаемые в обнажениях, позволяют рассматривать его как эталонный среди подобных ему массивов Алданской провинции в юго-восточной части Сибирской платформы. Породы Кондёрского массива прорывают и контактово метаморфизуют архейские образования фундамента платформы и рифейские породы её чехла, образуя с ними куполовидную структуру, сформированную при внедрении мантийного диапира преимущественно ультраосновного состава [5, 7, 11 и др.].

Изученные цирконы были выделены из пробы дунитов массой 1,5 кг (обр. 67–12), взятой нами в южной наименее эродированной части массива (рис. 1). Дунит представляет собой неравномернозернистый гранобластовый, с элементами катаклаза, агрегат зёрен оливина размером 3-4 мм, содержащий кристаллы феррихромита размером 2-3 мм. На основании детального изучения морфологии, внутреннего строения и изотопно-геохимических особенностей цирконов установлено, что они представлены двумя типами [8]. Первый тип цирконов образован индивидами овальной и округлой формы, для которых характерны "дымчатый" тип катодолюминесценции (рис. 2, обр. 14, 41, 36) и два "древних" кластера возрастов (2477 ± 18 и 1885 ± 52 млн лет [8]). Второй тип цирконов представлен идеально огранёнными кристаллами или агрегатами кристаллов призматического габитуса, для которых типичны тонкозональная катодолюминесценция (рис. 2, обр. 6, 38, 61) и два "молодых" кластера возрастов (176,0±1,2 и $143,0\pm 2,0$ млн лет [8]). Наиболее ранняя популяция цирконов датирует время метаморфического события на рубеже архея и протерозоя (~2,5 млрд лет). Наиболее поздние цирконы соответствуют по

¹Институт геологии и геохимии им. А. Н. Заварицкого Уральского отделения Российской Академии наук,

Екатеринбург

²Macquarie University, Sydney, Australia

^{*}E-mail: innabadanina@yandex.ru

Рис. 1. Особенности морфологии кольцевого хребта Кондёр, в центре которого расположен одноимённый массив; указано место отбора пробы дунита (обр. 67–12) в пределах западного отрога г. Осьминог в южной части массива.

времени образования эпохе тектоно-магматической активизации Алданского щита [4].

Нf-изотопные анализы выполнены в Национальном центре геохимической эволюции и металлогении континентов (GEMOC) Университета Маквори (Macquarie University) в Сиднее, Австралия. Результаты по изотопии гафния (17 анализов) для предварительно продатированных зёрен цирконов выполнены при помощи лазерной абляции (New Wave LUV213) и масс-спектрометрии с ионизацией в индуктивно-связанной плазме (Nu-plasma MC ICP-MS), следуя методике, детально охарактеризованной в работе [13]. Измеренные ${}^{176}Lu/{}^{177}Hf$ -отношения и константа распада ${}^{176}Lu = 1,865 \times 10^{-11} r^{-1}$ [14] были использованы для вычисления величины начального изотопного ${}^{176}Hf/{}^{177}Hf$ -отношения. Параметр эпсилон гафния (ɛHf), выражающий отклонение начального отношения ${}^{176}Hf/{}^{177}Hf$ между цирконом и хондритовым универсальным резервуаром (CHUR), умноженное на 10^4 , был рассчитан с использованием ${}^{176}Lu = 1,865 \cdot 10^{-11} r^{-1}$ и параметров CHUR, предложенного в работе [10], где ${}^{176}Lu/{}^{177}Hf = 0,0336 \pm 0,0001$ и ${}^{176}Hf/{}^{177}Hf =$ $= 0,282785 \pm 0,000011$. Модельный Hf-воз-

Рис. 2. Морфологические и изотопно-геохимические особенности цирконов Кондёрского массива. Изображения в катодолюминесцентных лучах (обр. 14, 41, 36, 6, 38 и 61). Места проведения Нf-изотопных анализов показаны кругами; в них приведены значения єНf. Цифры у кристаллов соответствуют номерам анализов в табл. 1. Содержание Th и U приведено в г/т. Масштабная линейка соответствует 100 мкм.

ДОКЛАДЫ АКАДЕМИИ НАУК том 486 № 5 2019

БАДАНИНА и др.

№ анализа	Возраст, млн лет	¹⁷⁶ Hf/ ¹⁷⁷ Hf	1δ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Yb/ ¹⁷⁷ Hf	Hfi*	εHf _(t)	1δ	<i>T</i> _{DM} , млрд лет
14	2496	0,281173	0,000013	0,000290	0,012020	0,281159	-0,9	0,5	2,85
17	2485	0,281132	0,000017	0,000134	0,005534	0,281126	1,4	0,6	2,89
41	2419	0,281248	0,000022	0,000206	0,008175	0,281239	0,1	0,8	2,74
36	1899	0,281583	0,000040	0,000031	0,001578	0,281582	0,3	1,4	2,28
3	176	0,282777	0,000016	0,000956	0,046754	0,282774	3,5	0,6	0,67
6	181	0,282629	0,000013	0,000784	0,034111	0,282626	-1,6	0,5	0,88
8	183	0,282682	0,000016	0,000660	0,032323	0,282680	0,3	0,6	0,80
9	178	0,282688	0,000021	0,000504	0,020512	0,282686	0,5	0,7	0,79
28	178	0,282929	0,000018	0,002257	0,092250	0,282921	8,8	0,6	0,47
38	182	0,282735	0,000014	0,001405	0,065461	0,282730	2,1	0,5	0,74
39	170	0,282740	0,000021	0,001238	0,053073	0,282736	2,0	0,7	0,73
64	175	0,282618	0,000010	0,000270	0,009940	0,282617	-2,1	0,3	0,88
60	174	0,282977	0,000038	0,001315	0,061441	0,282973	10,5	1,3	0,39
7	173	0,282782	0,000018	0,001918	0,082327	0,282776	3,5	0,6	0,68
47	145	0,282696	0,000016	0,000824	0,041822	0,282694	0,0	0,6	0,78
21	149	0,282799	0,000035	0,000660	0,031997	0,282797	3,7	1,2	0,64
61	138	0,282462	0,000024	0,000678	0,027242	0,282460	-8,4	0,8	1,11

Таблица 1. Нf-изотопные данные для цирконов Кондёрского массива

Примечание. Номера анализов 14, 41, 36, 6, 38, 61 соответствуют номерам образцов на рис. 2.

раст ($T_{\rm DM}$), определяющий минимальный возраст исходного субстрата из которого кристаллизовался циркон, был рассчитан с использованием измеренного значения ¹⁷⁶Lu/¹⁷⁷Hf в цирконе и параметра модели [12], согласно которой резервуар деплетированной мантии имел линейную изотопную эволюцию от ¹⁷⁶Hf/¹⁷⁷Hf = 0,279718 в 4,55 млрд лет до ¹⁷⁶Hf/¹⁷⁷Hf = 0,283250 в настоящее время и ¹⁷⁶Lu/¹⁷⁷Hf = 0,0384.

Цирконы Кондёрского массива характеризуются широкими вариациями начального изотопного состава гафния (176 Hf/ 177 Hf_i = 0,28113–0,28292, табл. 1, рис. 3а). Максимальными вариациями значения єНf обладают мезозойские цирконы дунитов Кондёрского массива (єНf от –8,4 до +10,5, *n* = 13, рис. 36). Подобные вариации єНf_(t) свидетельствуют о взаимодействии "ювенильного" мантийного источника (єНf_(t) = ~+15) с производными других источников, эквивалентных субконтинентальной литосферной мантии [12] и/или континентальной коре, по изотопному составу гафния характеризующихся сходными параметрами. Позднепротерозойская популяция цирконов Кондёрского массива обладает умеренными вариациями значения єНf (от –2,3 до +0,3, n = 4) и располагается близко к эволюционной линии CHUR (рис. 36). По изотопному составу гафния докембийские цирконы дунитов Кондёрского массива близки к раннеархейским цирконам платиноносных дунитов Нижнетагильского и Гулинского массивов [2]. Особенности изотопного состава гафния позднепротерозойских цирконов Кондёрского массива не противоречат выводу об их ксеногенной природе и вероятном захвате дунитами из пород фундамента Сибирской платформы.

Источники финансирования. Работа выполнена при поддержке РФФИ (проект 16-05-00967-а). Нf-изотопные данные получены с помощью измерительных приборов, поддержанных системной инфраструктурой DEST, ARC LIEF, NCRIS, производственными партнерами и Университетом Маквори (№ публикации 1185, Центр по изучению геохимической эволюции и металлогении континентов, GEMOC Key Centre (http://www.gemoc.mq.edu.au), № публикации 1016, Ведущий центр по изучению флюидных систем от ядра к коре (ARC Centre of Excellence for Core to Crust Fluid Systems, http://www. ccfs.mq.edu.au)).

590

Рис. 3. Бинарные зависимости: (а) начального значения ¹⁷⁶Hf/¹⁷⁷Hf (Hfi) от возраста и (б) єHf от возраста для цирконов Кондёрского массива. Для сравнения приведены линии изотопной эволюции деплетированной мантии (DM) и хондритового универсального резервуара (CHUR).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Андреев Г.В.* Кондёрский массив ультраосновных и щелочных пород. Новосибирск: Наука, 1987. 74 с.
- 2. Баданина И.Ю., Белоусова Е.А., Малич К.Н. // ДАН. 2013. Т. 448. № 1. С. 59-63.
- Гурович В.Г., Землянухин В.Н., Емельяненко Е.П., Каретников А.С., Квасов А.И., Лазаренков В.Г., Малич К.Н., Мочалов А.Г., Приходько В.С., Степашко А.А. Геология, петрология и рудоносность Кондёрского массива. М.: Наука, 1994. 170 с.
- 4. *Ельянов А.А., Андреев Г.В.* Магматизм и металлогения платформенных областей многоэтапной активизации. Новосибирск: Наука, 1991. 168 с.
- 5. *Ефимов А.А., Таврин И.Ф. //* ДАН. 1978. Т. 243. № 4. С. 991–994.
- Лазаренков В.Г., Малич К.Н., Сахьянов Л.О. Платинометальная минерализация зональных ультраосновных и коматиитовых массивов. С-Пб.: Недра, 1992. 217 с.
- Малич К.Н. Платиноиды клинопироксенит-дунитовых массивов Восточной Сибири (геохимия, минералогия, генезис). СПб.: СПб. картограф. фабрика ВСЕГЕИ, 1999. 293 с.

- 8. *Малич К.Н., Ефимов А.А., Баданина И.Ю.* // ДАН. 2012. Т. 446. № 3. С. 308–312.
- Россыпные месторождения России и других стран СНГ (Минерагения, промышленные типы, стратегия развития минерально-сырьевой базы) / Под ред. Н.П. Лаверов, Н.Г. Патык-Кара. М.: Науч. мир, 1997. 479 с.
- Bouvier A., Vervoort J.D., Patchett P.J. // Earth and Planet. Sci. Lett. 2008. V. 273. P. 48–57.
- Burg J.-P., Bodinier J.-L., Gerya T., Bedini R-M., Boudier F., Dautria J.-M., Prikhodko V., Efimov A., Pupier E., Balanec J.-L. // J. Petrol. 2009. V. 50. № 2. P. 289–321.
- Griffin W. L., Pearson N. J., Belousova E. A., Jackson S. E., van Achtenbergh E., O'Reilly S.Y., Shee S.R. // Geochim. et Cosmochim. Acta. 2000. V. 64. P. 133–147.
- Griffin W. L., Wang X., Jackson S. E., Pearson N.J., O'Reilly S.Y., Xu X., Zhou X. // Lithos. 2002. V. 61. P. 237–269.
- Sherer E., Munker C., Mezger K. // Science. 1996.
 V. 293. P. 683–687.

БАДАНИНА и др.

HAFNIUM ISOTOPE COMPOSITION OF ZIRCON FROM THE KONDYOR CLINOPYROXENITE-DUNITE MASSIF (KHABAROVSK TERRITORY, RUSSIA) I. Yu. Badanina¹, E. A. Belousova², K. N. Malitch¹

¹Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russian Federation

²Australian Research Council Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Macquarie University, Sydney, Australia

Presented by Academician of the RAS V.A. Koroteev April 04, 2017

Received April 24, 2017

This study evaluates for the first time Hf-isotope characteristics of zircon from dunite of the Kondyor massif, which is closely related to an economic platinum placer deposit. The significant range in ϵ Hf(t) values (from -8.4 ± 0.8 to 10.5 ± 1.3) in Mesozoic zircons indicates the interaction of a 'juvenile' mantle source with distinct magma sources, equivalent to a subcontinental lithospheric mantle and/or a continental crust. The peculiarities of the Hf-isotopic composition of Precambrian zircons (ϵ Hf(t) from -2.3 to +0.3) is consistent with their xenogenic origin and inheritance from basement rocks of the Siberian Craton.

Keywords: zircon, Hf-isotopic composition, dunite, magma sources, Kondyor massif.