——— МЕХАНИКА —

УДК 532.526.3

УПРАВЛЕНИЕ ЛАМИНАРНО-ТУРБУЛЕНТНЫМ ПЕРЕХОДОМ В ТРЁХМЕРНОМ ПОГРАНИЧНОМ СЛОЕ ПРИ ПОВЫШЕННОЙ ВНЕШНЕЙ ТУРБУЛЕНТНОСТИ С ПОМОЩЬЮ ДИЭЛЕКТРИЧЕСКОГО БАРЬЕРНОГО РАЗРЯДА

С. А. Баранов¹, А. Ф. Киселёв¹, И. А. Моралев^{1,2}, Д. С. Сбоев^{1,*}, С. Н. Толкачёв¹, академик РАН С. Л. Чернышев¹

Поступило 01.03.2019 г.

Приводятся результаты экспериментального исследования воздействия актуатора с диэлектрическим барьерным разрядом (ДБР) на ламинарно-турбулентный переход в трёхмерном пограничном слое при повышенной внешней турбулентности. В базовом пограничном слое при переходе к турбулентности преобладали неустойчивые бегущие возмущения поперечного течения, чьи характеристики слабо зависели от положения по размаху модели. ДБР-актуатор, создававший стационарные продольные вихри с заданной длиной волны в трансверсальном направлении, позволил снизить темп порождения турбулентных пятен по сравнению с базовым режимом.

Ключевые слова: трёхмерный пограничный слой, неустойчивость поперечного течения, стационарные вихри поперечного течения, диэлектрический барьерный разряд, внешняя турбулентность, перемежаемость. **DOI:** https://doi.org/10.31857/S0869-56524866668-672

ВВЕДЕНИЕ

Снижение сопротивления трения посредством ламинаризации обтекания остаётся актуальной проблемой аэродинамики летательных аппаратов. В последние годы в качестве метода решения этой задачи рассматривается воздействие на пограничный слой объёмной силы, генерируемой при помощи расположенного на обтекаемой поверхности диэлектрического барьерного разряда (ДБР) [1]. Имеются две стратегии применения ДБР-актуаторов в пограничном слое. В соответствии с первой [2] происходит модификация среднего течения с целью изменения характеристик его гидродинамической устойчивости в целом. Вторая стратегия состоит в создании в пограничном слое таких контролируемых и в общем случае локализованных в пространстве и времени воздействий, которые препятствуют развитию наиболее опасных, приводящих к ламинарнотурбулентному переходу, возмущений. В предшествовавших данной работе экспериментах при низком уровне фоновой турбулентности реализован второй случай. В неустойчивом трёхмерном пограничном слое, соответствующем типичному течению на стреловидном крыле, при помощи ДБР-актуатора создавались стационарные субкритические по длине

волны вихри неустойчивости поперечного течения, препятствующие развитию наиболее неустойчивых стационарных же возмущений. Ранее эта концепция была реализована в лётном эксперименте [3] с помощью дискретных элементов шероховатости.

Проведённые в аэродинамической трубе (АДТ) Т-124 ЦАГИ при естественном фоне её турбулентности эксперименты показали, что ДБР-актуаторы генерируют не только расчётные стационарные возмущения, но и неконтролируемые нестационарные в низкочастотном с точки зрения физики разряда диапазоне 0-5 кГц. Генерация этих возмущений полностью нивелирует возможный положительный эффект ДБР-актуатора, приводя к более раннему переходу к турбулентности по сравнению с отсутствием воздействия ДБР. На рис. 1 показаны типичные распределения спектральной плотности Е возмущений в неустойчивом трёхмерном пограничном слое. Хорошо видно возрастание на порядок колебаний во всей полосе частот, особенно для пакета нестационарных мод неустойчивости трёхмерного пограничного слоя с центральной частотой около 350 Гц. Следует особо подчеркнуть, что из исследованных к настоящему моменту в АДТ Т-124 такими свойствами обладали ДБР-актуаторы всех конструкций в любой из упомянутых стратегий их применения. Подобное неблагоприятное поведение ДБР-актуатора также наблюдалось в экспериментах [4].

С другой стороны, в экспериментах при низкой степени турбулентности было обнаружено, что ДБР-

¹ Центральный аэрогидродинамический институт им. Н.Е. Жуковского, Жуковский Московской обл.

² Объединённый институт высоких температур Российской Академии наук, Москва.

^{*} E-mail: t124@inbox.ru

Рис. 1. Типичные спектры возмущений в пограничном слое перед началом генерации турбулентных пятен: 1 — низкая степень турбулентности, без разряда; 2 — низкая степень турбулентности, с разрядом; 3 — повышенная степень турбулентности, без разряда; 4 — повышенная степень турбулентности, с разрядом.

актуаторы успешно создают расчётные искажения полей средней скорости. Этот факт привёл к необходимости исследовать воздействие актуатора на переход при высокой степени внешней турбулентности. Подобная постановка может быть актуальна для течений, рассматриваемых в задачах внутренней аэродинамики и характеризующихся высоким уровнем внешней турбулентности. В этом случае можно ожидать, что неконтролируемые нестационарные воздействия будут маскироваться интенсивным фоном естественно развивающихся в пограничном слое возмущений. Как показали эксперименты, именно такая ситуация имела место в данной работе, высокочастотные компоненты спектров пульсаций оставались практически неизменными при включении разряда (рис. 1).

МЕТОДИКА ЭКСПЕРИМЕНТОВ

Эксперименты проведены в малотурбулентной АДТ T-124 ЦАГИ на модели плоской пластины стреловидностью 35° с наведённым градиентом давления и снабжённой фальшстенками для моделирования течения в пограничном слое стреловидного крыла. Исследованный трёхмерный пограничный слой в области отрицательного градиента давления характеризовался ярко выраженной неустойчивостью поперечного течения. В работе использована система координат с продольной осью *X*, направленной перпендикулярно передней кромке пластины, осью трансверсальных

ДОКЛАДЫ АКАДЕМИИ НАУК том 486 № 6 2019

координат Z, направленной вдоль передней кромки, ось Y нормальна к стенке. В качестве характерной скорости U_0 используется скорость в контрольном сечении рабочей части АДТ, расположенном за срезом сопла. Основные результаты были получены при $U_0 = 18,4$ м/с. Скорость на внешней границе пограничного слоя обозначена U_e . При проведении экспериментов выполнялись пневмометрические и термоанемометрические измерения. Для генерации повышенного уровня турбулентности в рабочей части АДТ применялась установленная на срезе сопла сетка, обеспечивающая уровень пульсаций 0,93%.

Положение ламинарно-турбулентного перехода характеризовалось при помощи распределений перемежаемости в сигнале термоанемометра у вблизи стенки. Детектор перемежаемости описан в [5]. Зависимость у от продольной координаты можно представить как

$$\gamma = 1 - \exp\left[-\frac{n\sigma}{U_0} (X - X_t)^2\right]$$

где X_t – координата начала области перехода, n – темп порождения турбулентных пятен в области их возникновения, σ – параметр, зависящий от скорости и угла распространения турбулентных пятен. Данная зависимость была предложена для двумерных течений, её применение в трёхмерных потоках обосновано данными [6]. Функция перемежаемости $F = \sqrt{-\ln(1-\gamma)}$ в зоне разрушения ламинарного режима может быть аппроксимирована прямой линией. За точку начала зоны разрушения ламинарного режима X_t в работе принята точка пересечения прямой F(X) с осью X, за точку окончания перехода X_T – точка, соответствующая F = 2,14 ($\gamma = 0,99$).

Применявшийся в экспериментах ДБР-актуатор разработан в ОИВТ РАН. Он состоял из внешнего коронирующего электрода (алюминиевая фольга шириной 23,5 мм, длиной 380 мм и толщиной вместе с клеящим слоем 15 мкм), наклеенного на керамическую (оксид алюминия) пластину толщиной 1 мм, под которой размещался секционированный ответный электрод. Конструкция актуатора подробнее описана в [7]. В большинстве измерений ДБР-актуатор питался синусоидальным напряжением амплитудой 2,5 кВ и частотой 65 кГц. Внешний электрод размещался на модели параллельно её передней кромке. Группы микроразрядов, локализованные над секциями управляющего электрода, зажигались в положении *X*=125 мм с шагом по трансверсальной координате 5 мм. Конструкция актуатора позволила провести большой цикл измерений длительностью несколько месяцев без изменения рабочих характеристик системы. При низкой степени турбулентности в АДТ было установлено, что актуатор генерирует в пограничном слое стационарную моду неустойчивости поперечного течения также с длиной волны около 5 мм, субкритическую по отношению к наиболее неустойчивым для данного пограничного слоя вихрям с длиной волны 7–10 мм.

РЕЗУЛЬТАТЫ

Перед началом экспериментов по управлению переходом были проведены тщательные исследования механизма перехода в трёхмерном пограничном слое на модели при повышенной степени внешней турбулентности. Они показали, что механизм перехода существенно отличается от случая малотурбулентного внешнего потока и определяется развитием бегущих мод неустойчивости поперечного течения. Начальные стадии развития возмущений хорошо описываются линейной теорией гидродинамической устойчивости. Роль стационарных возмущений оказалась невелика, их амплитуда при начале нелинейных процессов в пограничном слое не превышала $0,01 U_0$, в отличие от типичной амплитуды около 10% для низкого уровня внешней турбулентности. Измеренные при различных Х поля скорости в плоскостях (Y, Z) и распределения по Z (рис. 2) не выявили заметных отклонений средней скорости от её осреднённого по размаху значения $\langle U \rangle$. Такая же картина наблюдается и для среднеквадратичных пульсаций, амплитуда которых слабо зависит от размаха. Начало нелинейных взаимодействий отме-

Рис. 2. Распределения по трансверсальной координате средней скорости (вверху) и среднеквадратичных пульсаций скорости (внизу), $X=336 \text{ мм}, \langle U \rangle / U_e = =0,55$. Штриховые линии — без разряда, сплошные — с разрядом.

чалось при Xоколо 400 мм. Разрушение ламинарного режима происходило через образование турбулентных пятен, начиная с $X_t = 453$ мм.

Включение разряда приводило к существенной перестройке полей как средней скорости, так и её пульсационной компоненты, которые оказывались модулированными по трансверсальной координате (рис. 2). Профили отклонений средней скорости от $\langle U \rangle$ и профили пульсаций по *Y*имели характерную для возмущений поперечного течения колоколообразную форму с одним максимумом. Таким образом, ДБР-актуатор создавал в пограничном слое систему стационарных продольных вихрей. Модуляция этими вихрями среднего течения вызывала соответствующую модуляцию поля пульсаций скорости. Максимумы пульсаций расположены приблизительно в местах наибольшего градиента по *Z* средней скорости течения.

Нарастание индуцируемых разрядом стационарных вихрей продолжалось примерно до X = 340 мм, после чего они выходили на стадию насыщения с амплитудой около 4%. В области разрушения ламинарного режима течения при X > 517 мм амплитуда вихрей быстро падала. Амплитуда среднеквадратичных пульсаций скорости в начале области измерений (X = 220 мм) при включённом разряде мало отличалась от базового случая, составляла около 2% и слабо зависела от положения по размаху. Ниже по потоку нарастание в областях максимумов и минимумов пульсаций несколько различалось. В области минимума пульсации нарастали медленнее по сравнению с базовым пограничным слоем без разряда, а в области максимума практически с тем же темпом, что и в базовом случае. При этом амплитуда в области максимумов была несколько выше, чем в базовом режиме. Это возрастание амплитуды связано с некоторым увеличением энергии колебаний в спектрах в полосе до 100 Гц. В зоне разрушения ламинарного течения (X>577 мм) амплитуда пульсаций выходила на насыщение около 12%, её зависимость от размаха существенно ослабевала, а в профилях пульсаций появлялся пристенный максимум, характерный для режима генерации турбулентных пятен. При включённом актуаторе такой максимум возникал позже, чем в базовом режиме.

Распределения пристенной перемежаемости показаны на рис. 3. Измерения проводились как в фиксированной точке пограничного слоя при изменении скорости набегающего потока, так и по пространству вдоль различных характерных линий, соответствующих минимумам и максимумам в распределениях *U* и и_{ms}, подобных показанным на рис. 2. При вклю-

ДОКЛАДЫ АКАДЕМИИ НАУК том 486 № 6 2019

Рис. 3. Зависимости перемежаемости от скорости в контрольном сечении АДТ при X = 585 мм (слева) и от продольной координаты при $U_0 = 18,4$ м/с (справа). Светлые символы, штриховые линии — без разряда, тёмные символы, сплошные линии — с разрядом.

чении разряда турбулентное состояние течения в фиксированной точке достигалось при значениях U_0 , превышающих соответствующую величину для базового случая примерно на 1 м/с. Распределения перемежаемости по пространству продемонстрировали хорошую повторяемость для различных значений Z. Функция перемежаемости хорошо аппроксимируется прямой. При включении разряда координата Х, практически не изменилась и составила 452 мм, однако положение конца перехода сместилось вниз по потоку по сравнению с базовым режимом, $X_T = 767$ и 789 мм соответственно. В исследованном трёхмерном пограничном слое с отрицательным градиентом давления, как и в [6], где при повышенной внешней турбулентности изучался пограничный слой на стреловидном крыле с полочным распределением давления, длина

зоны разрушения ламинарного режима составляла весьма значительную величину — около 40% расстояния от передней кромки до положения турбулентного состояния течения. Поэтому уменьшение темпа порождения турбулентных пятен при работе ДБР-актуатора может свидетельствовать о достаточно высоком потенциале исследованного метода для снижения трения.

Механизм воздействия разряда на переход связан с изменением характеристик устойчивости пограничного слоя. Анализ распределений спектральной плотности энергии бегущих возмущений (рис. 1 и 4) показывает, что введение в пограничный слой стационарных вихрей приводит к снижению энергии колебаний в полосе 100–300 Гц. Однако в диапазоне до 100 Гц в зонах максимумов *U*(*Z*) энергия пульсаций

Рис. 4. Изолинии распределений спектральной плотности пульсаций скорости по толщине пограничного слоя, X = 462 мм. Слева направо: без разряда, с разрядом в максимуме U(Z), с разрядом в минимуме U(Z). Шаг изолиний 0,1 от максимального значения для распределения в максимуме с разрядом.

ДОКЛАДЫ АКАДЕМИИ НАУК том 486 № 6 2019

несколько возрастает. Кроме того, при работе актуатора эти низкочастотные возмушения независимо от положения по размаху медленнее затухают вне пограничного слоя. По всей видимости, в описанных экспериментах возмущения с частотами 100-300 Гц играли более важную роль в процессах генерации турбулентных пятен, чем колебания в иных диапазонах. В некоторых из исследованных в [6] режимах перехода также наблюдалось снижение темпа порождения турбулентных пятен. Предположительно, это происходило вследствие взаимодействия генерируемых внешней турбулентностью квазистационарных полосчатых структур и бегущих возмущений поперечного течения. Полученные в данной работе результаты свидетельствуют в пользу такого предположения. Хотя при исследовании базового пограничного слоя не было обнаружено возмущений с особенностями, характерными для алгебраической неустойчивости и немодального роста, квазистационарные полосчатые структуры и возбуждаемые разрядом стационарные вихри могут играть сходные роли.

Таким образом, в результате проведённых экспериментов было показано, что возбуждающий стационарные вихри неустойчивости поперечного течения ДБР-актуатор может быть использован для затягивания ламинарно-турбулентного перехода в трёхмерном пограничном слое при повышенной степени внешней турбулентности. Также следует подчеркнуть, что исследованный актуатор был разработан для управления течением в условиях низкого уровня внешних возмущений и поэтому мог быть далёк от оптимального для данных экспериментов. Этот вопрос нуждается в дальнейшем изучении.

СПИСОК ЛИТЕРАТУРЫ

- Kriegseis J., Simon B., Grundmann S. Towards In-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control // Appl. Mech. Rev. 2016. V. 68. № 2. 020802.
- Алешин Б.С., Курячий А.П., Ребров И.Е., Хомич В.Ю., Чернышев С.Л., Ямщиков В.А. Многоразрядная актуаторная система для силового электрогидродинамического воздействия на пограничный слой аэродинамических поверхностей // Письма в ЖТФ. 2017. Т. 43. В. 1. С. 45–52.
- 3. Saric W.S., Carpenter A.L., Reed H.L. Passive Control of Transition in Three-Dimensional Boundary Layers, with Emphasis on Discrete Roughness Elements // Phil. Trans. Roy Soc. A. 2011. V. 369. № 1940. P. 1352–1364.
- Serpieri J., Venkata S.Y., Kotsonis M. Conditioning of Cross-Flow Instability Modes Using Dielectric Barrier Discharge Plasma Actuators // J. Fluid Mech. 2017. V. 833. P. 164–205.
- 5. Власов В.А., Жигулев С.В., Иванов А.И., Киселев А.Ф., Кузьминский В.А., Сбоев Д.С., Чернышев С.Л. Ламинарно-турбулентный переход на крыльях с ламинаризированным профилем LV6. І. Переход в естественных условиях // Уч. зап. ЦАГИ. 2011. Т. 42. № 5. С. 10–27.
- Киселев А.Ф., Сбоев Д.С., Чернышев С.Л. Особенности ламинарно-турбулентного перехода в трехмерном пограничном слое при повышенной внешней турбулентности // ДАН. 2014. Т. 454. № 6. С. 665–668.
- Moralev I., Bityurin V., Firsov A., Sherbakova V., Selivonin I., Ustinov M. Localized Micro-Discharges Group Dielectric Barrier Discharge Vortex Generators: Disturbances Source for Active Transition Control. Proc. I. Mech Eng. P. G: J. Aerospace Eng. 2018.

TRANSITION CONTROL IN A THREE-DIMENSIONAL BOUNDARY LAYER AT ELEVATED FREE STREAM TURBULENCE USING DIELECTRIC BARRIER DISCHARGE S. A. Baranov¹, A. Ph. Kiselev¹, I. A. Moralev^{1,2}, D. S. Sboev¹, S. N. Tolkachev¹, Academicain of the RAS S. L. Chernyshev¹

¹ Central Aerohydrodynamic Institute Named after N.E. Zhukovsky, Zhukovsky, Moscow Region, Russian Federation ² Joint Institute of High Temperature of the Russian Academy of Sciences, Moscow, Russian Federation

Received March 1, 2019

The results of an experimental study of the effect of dielectric barrier discharge (DBR) actuator on laminarturbulent transition in a three-dimensional boundary layer under influence of elevated free-stream turbulence are presented. The travelling cross-flow instability modes are dominated in transition in a base configuration. Their characteristics do not depend on a spanwise position. The DBD-actuator that generated stationary cross-flow vortices with the predefined spanwise wavelength when turned on was capable to reduce a turbulent spots production rate in comparison to the base regime.

Keywords: three-dimensional boundary layer, cross-flow instability, stationary cross-flow vortices, dielectric barrier discharge, free-stream turbulence, intermittency.