——— ГЕОХИМИЯ —

УДК 549.46, 552.331.1

Y—REE-МИНЕРАЛИЗАЦИЯ В БИОТИТ-АРФВЕДСОНИТОВЫХ ГРАНИТАХ КАТУГИНСКОГО РЕДКОМЕТАЛЬНОГО МЕСТОРОЖДЕНИЯ, ЗАБАЙКАЛЬСКИЙ КРАЙ, РОССИЯ

А. Е. Старикова^{1,2,*}, член-корреспондент РАН Е. В. Скляров^{3,4}, В. В. Шарыгин^{1,2}

Поступило 10.10.2018 г.

Опубликованы результаты изучения карбонатно-фторидных обособлений с крайне высокими содержаниями Y и REE из биотит-арфведсонитовых гранитов Катугинского редкометального месторождения. Получены данные о химизме агрегатов минералов: гагаринита-(Y), твейтита-(Y), флюоцерита-(Ce), бастнезита, фторнатропирохлора. В кварце вмещающих гранитов обнаружена карбонатно-фторидная глобула с сохранившейся последовательностью кристаллизации выполняющих её фаз. Эта находка может служить подтверждением ранее предложенной идеи о процессах силикатно-фторидной несмесимости для объяснения существования Y—REE-агрегатов в гранитах Катугинского массива. Сделано предположение о том, что появление фторидного расплава произошло на магматической стадии формирования биотит-арфведсонитовых гранитов и привело к обеднению вмещающих гранитов фтором и перераспределению REE и Y во фторидный солевой расплав.

Ключевые слова: Катугинское месторождение, щелочные граниты, ликвация, гагаринит-(Y), твейтит-(Y), бастнезит, флюоцерит-(Се), фторнатропирохлор.

DOI: https://doi.org/10.31857/S0869-5652487188-92

Уникальное Катугинское месторождение Та–Nb– Y-руд палеопротерозойского возраста характеризуется промышленными концентрациями редкоземельных элементов (REE), урана, циркония и криолита [1]. Оно расположено на севере Забайкальского края и приурочено к щелочным гранитам А-типа Катугинского комплекса [2–4]. В Катугинском комплексе выделяют три группы гранитов [4]: 1 — биотитовые (Bt) и биотит-рибекитовые (Bt-Rbk) граниты ранней фазы; 2 — биотит-арфведсонитовые (Bt–Arf) граниты; 3 — арфведсонитовые (Arf), эгирин-арфведсонитовые (Aeg–Arf) и эгириновые (Aeg) граниты.

Главными рудными минералами месторождения являются минералы группы пирохлора, циркон, колумбит и криолит. REE и Y входят в пирохлор, а также образуют собственные минералы, представленные фторидами (иттрофлюоритом, твейтитом-(Y), гагаринитом-(Y), флюоцеритом-(Ce)) и фторкарбонатами (бастнезитом-(Ce), реже паризитом-

(Се)), которые встречаются во всех типах гранитов. Положение REE-фаз и особенности их химического состава частично описаны в работах В.В. Архангельской [5] и В.Б. Савельевой с соавторами [6, 7], где были отмечены как индивидуальные зёрна, так и их агрегаты, в основном представленные У-содержащим флюоритом с вростками гагаринита, флюоцерита и бастнезита. Интерпретация происхождения агрегатов у авторов различна: распад Ү-флюорита либо его замещение другими REE-фазами [5]; кристаллизация из фторидного расплава, отделившегося при формировании гранитов Катугинского комплекса [6, 7]. Однако фактов для подтверждения или опровержения гипотез было представлено недостаточно. В Bt-Arf-гранитах обнаружены карбонатнофторидные обособления, состоящие преимущественно из высоко REE-Y-фаз (гагаринит, бастнезит, флюоцерит, твейтит, рис. 1), особенности проявления которых позволяют уточнить генезис подобных обособлений.

Исследования проводились с использованием аналитического оборудования ЦКП Многоэлементных и изотопных исследований СО РАН, Новосибирск, Россия: сканирующий электронный микроскоп MIRA 3 LMU, оснащённый системой микроанализа INCA Energy 450, и рентгеноспектральный микроанализатор JXA-8100 (оператор Е.Н. Нигматулина).

Вt-Arf граниты характеризуются максимальными концентрациями Y (до 1844 г/т) и высокими относительно Aeg—Arf-гранитов содержаниями CaO

¹ Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской Академии наук, Новосибирск

² Новосибирский национальный исследовательский государственный университет

³ Институт Земной коры Сибирского отделения

Российской Академии наук, Иркутск

⁴Дальневосточный федеральный университет,

Владивосток

^{*}E-mail: starikova@igm.nsc.ru

Рис. 1. REE–Y-фториды и фторкарбонаты из карбонатно-фторидных обособлений в биотит-арфведсонитовых гранитах (BSE фото). Ва-Tv — "Ва-твейтит", Bsn — бастнезит, Fce — флюоцерит-(Ce), Gg — гагаринит-(Y), Ms — мусковит, Pcl — фторнатропирохлор, Qu — кварц, Sd — Mn-сидерит, Shm — шамозит, Tv — твейтит-(Y).

(0,21–0,84 мас.%) [4]. Карбонатно-фторидные обособления (обычно до 1 мм) выполняют интерстиции между породообразующими минералами гранитов, а также встречаются в виде глобул в биотите, кварце и калишпате (рис. 1а, б). В крупных обособлениях помимо основных минералов (гагаринит, бастнезит, флюоцерит и твейтит) также встречаются скопления фторнатропирохлора и агрегаты, преимущественно состоящие из кварца, Мп-сидерита (или Fe-родохрозита) и флюорита (рис. 1в).

Гагаринит-(Y) NaCaYF₆ в изученных обособлениях нередко характеризуется зональностью: как первичной ростовой (рис. 1г), а также и зональностью, связанной с распадом твёрдых растворов. Наблюдаются значительные вариации химического состава гагаринитов. Содержание Na (6,85– 3,45 мас.%), как правило, значительно ниже, чем в идеальном составе (7,9 мас.%). Между Na и REE+Y, а также Na и F существует отчётливая отрицательная корреляции (коэффициент корреляции -0,86 и -0,9 соответственно), содержания кальция для зональных гагаринитов меняются незначительно (11–13 мас.%). Можно предполагать вариации состава от NaCaYF₆ до Na_{0,5}(REE, Y)_{0,5}CaYF₇. В зональных гагаринитах наблюдаются вариации как общей концентрации REE, так и отдельных HREэлементов (табл. 1, рис. 1г). Составы в структурах распада различаются соотношениями Y/REE и Ca/ REE либо LREE/HREE.

Твейтит-(Y) (Y,Na)₆(Ca,REE)₆(Ca,Na,REE)₆(Ca, Na)F₄₂ является одной из главных фаз в обособлениях, нередко образуя с бастнезитом незакономерные срастания (рис. 1в). Он бывает зональным, но вариации составов незначительны. Минерал характеризуется практически полным отсутствием LREE, зональность обусловлена различием соотношения Ca/(HREE+Y). Концентрации HREE варьируют от 5,7 до 9,5 мас.%, Y от 23,3 до 27,8 мас.%. В обособлениях были диагностированы "Ватвейтит" (Ba — 22 мас.%) (рис. 1в, табл. 1) и "Sr–Bатвейтит" (Sr до 15,5 мас.%, Ba до 7 мас.%), не зарегистрированные IMA в качестве новых минералов. Ранее эти фазы уже были описаны в Aeg—Arfгранитах [3, 8].

Флюоцерит-(Ce) (Ce, La, Nd) F_3 образует вытянутые до игольчатых либо округлые зёрна (рис. 1а-в).

	Gg			Tv	"Ba-Tv"	"Ba-Sr-Tv"	Fce	
	1	2	3	4	<i>n</i> = 24	<i>n</i> = 4	<i>n</i> = 1	<i>n</i> = 17
Са	12,73	12,61	11,97	10,54	20,86	5,17	4,98	0,17
Na	3,19	3,92	4,65	4,76	1,41	0,67	_	_
Κ	_	_	—	_	0,31	0,24	0,26	_
Ba	_	_	—	_	0,60	19,98	6,65	_
Sr	_	_	—	_	0,51	_	15,22	0,09
La	0,40	_	—	_	_	_	_	21,12
Ce	3,01	_	—	_	0,19	0,17	2,46	37,71
Pr	0,59	_	—	_	_	_	_	2,72
Nd	3,66	_	—	_	0,17	_	2,60	6,01
Sm	2,09	1,10	0,43	_	0,06	_	2,09	0,30
Gd	3,49	4,52	1,91	0,96	0,59	1,23	5,95	0,12
Tb	0,64	0,81	—	_	0,02	0,42	_	_
Dy	4,42	6,69	5,22	7,15	2,30	5,39	7,47	0,11
Но	_	_	1,43	1,79	0,38	1,08	1,16	_
Er	1,55	2,87	3,31	4,26	2,25	3,72	2,53	_
Yb	5,05	2,15	1,22	1,58	1,85	1,96	0,82	_
Y	20,80	25,44	30,11	29,41	26,37	25,56	11,94	0,19
Th	_	_	—	_	_	_	_	0,82
F	37,11	37,80	39,08	38,23	41,09	32,31	30,07	29,33
Сумма	98,72	97,91	99,34	98,67	99,07	98,14	98,03	98,93
∑REE	24,89	18,15	13,52	15,73	7,64	13,95	25,08	68,08

Таблица 1. Химический состав (мас.%) фторидов из обособлений в биотит-арфведсонитовых гранитах (EDS-метод)

Примечание. Gg — гагаринит-(Y), Tv — твейтит-(Y), Fce — флюоцерит-(Ce). Номера анализов гагаринита (1–4) совпадают с номерами точек на рис. 1г. *n* — количество анализов. "–" — ниже предела обнаружения.

Он имеет достаточно выдержанный состав с превалирующим содержанием Се над другими LREE (табл. 1).

Выделяются две основные генерации бастнезита (Ce, Nd, La)[CO₃]F. Бастнезиты ранней генерации образуют зёрна идиоморфного облика (рис. 1а, б) либо игольчатые агрегаты в срастании с твейтитом или гагаринитом (рис. 1в) и характеризуются широкими вариациями составов. Характерны высокие концентрации Nd₂O₃ (15,2–23,9 мас.%), нередко превышающие содержания других лантаноидов, в том числе и Ce₂O₃ (13,5-26,8 мас.%), т.е. фазы следует относить к бастнезиту-(Nd). Концентрации HREE₂O₃ и Y₂O₃ могут варьировать от практически нулевых до 21 и до 9,4 мас.% соответственно. В зёрнах бастнезитов нередко обнаруживается сложная ростовая зональность, связанная с вариацией LREE/(HREE+Y), табл. 2. Бастнезиты поздней генерации образуют псевдоморфозы по флюоцериту и имеют максимально высокие содержания La₂O₃ (до 21 мас.%) и низкие Nd₂O₃ (5,3–8,6 мас.%).

Фторнатропирохлор (Na, Pb, Ca, REE, U)₂Nb₂O₆F в крупных карбонатно-фторидных обособлениях образует скопления идиоморфных зёрен (0,3-0,1 мм) без видимых признаков вторичных изменений и однородных по составу. Он отличается максимально высокими содержаниями Na_2O (до 10,5 мас.%) и высокими концентрациями $LREE_2O_3$ (13–16,7 мас.%), табл. 2.

В зёрнах пирохлора отмечены многочисленные первичные полифазные включения (<30 мкм) (рис. 1д-е), содержащие преимущественно REE фториды и карбонаты, среди которых были диагностированы гагаринит, бастнезит, твейтит и Mnсидерит. Последний обнаружен в пирохлоре, контактирующем с сидерит-мусковит-кварцевым агрегатом (рис. 1д, е). Можно предположить, что кристаллизация пирохлора происходила непосредственно из REE-карбонатно-фторидной среды и он является одним из наиболее ранних минералов.

В кварце Bt-Arf-гранитов, вмещающих крупные Y-REE-обособления, была обнаружена карбонатнофторидная глобула (рис. 1а, б) с сохранившейся последовательностью кристаллизации выполняющих её фаз. Наиболее ранними фазами являлись бастнезит-(Ce), твейтит-(Y) и флюоцерит-(Ce). После завершения кристаллизации бастнезита первой генерации рост кристаллов твейтита и флюоцерита продолжался. На завершающих стадиях шло образование гагаринита и шамозита. При кристаллизации гагаринита в остаточной солевой среде происходило накопление CO₂, что привело к обра-

Таблица 2. Химический состав (мас.%) фторнатропирохлоров (WDS-метод) и бастнезитов (EDS-метод) из обособлений в биотит-арфведсонитовых гранитах

	Pcl	Bsn						
	<i>n</i> = 36	1	2	3	4			
TiO ₂	2,87	_	_	_	_			
CaO	1,88	0,69	0,67	0,60	0,18			
Na ₂ O	9,40	_	_	_	_			
Ce ₂ O ₃	8,43	16,22	16,96	16,42	40,53			
La ₂ O ₃	1,98	2,77	2,45	2,44	20,27			
Pr ₂ O ₃	1,09	3,02	4,07	3,90	2,47			
Nd_2O_3	3,39	17,16	19,62	17,52	5,59			
Sm_2O_3	0,77	7,27	8,80	7,48	_			
Gd_2O_3	0,42	9,35	8,83	9,83	_			
Tb_2O_3	_	1,75	_	_	_			
Dy_2O_3	0,22	6,83	5,07	6,65	1,51			
Er ₂ O ₃	_	1,58		1,36	_			
Y_2O_3	0,53	6,50	4,41	4,85	1,17			
ThO ₂	1,32	0,56	0,43	—	0,96			
UO ₂	0,49	_	_	—	_			
Nb_2O_5	58,95	_	_	_	_			
Ta ₂ O ₅	2,04	_	_	—	_			
F	4,74	9,07	8,81	8,62	8,81			
Сумма	98,52	82,77	80,12	79,67	81,49			
$O=F_2$	1,99	3,82	3,71	3,63	3,71			
Сумма	96,52	77,52	75,02	74,68	76,39			
ΣREE_2O_3	16,30	65,95	65,80	65,60	70,37			

Примечание. 1, 2 — зональный бастнезит (1 — центр, 2 — край), 3 — игольчатый бастнезит в срастании с твейти-том-(Y), 4 — псевдоморфоза бастнезита по флюоцериту-(Се).

зованию бастнезита второй генерации и замещению им флюоцерита.

Находки в обособлениях пирохлоров, содержаших первичные полифазные включения, и глобулы с сохранившейся последовательностью кристаллизации редкоземельных фаз противоречат гипотезе о распаде раннего REE-фторида [5] и хорошо согласуются с идеей о существовании силикатно-фторидной несмесимости [6, 7]. Подтверждением существования именно фторидного расплава, а не гидротермального раствора (либо флюида) могут служить результаты экспериментальных работ, в которых показано, что растворимость REE и Y в водных флюидах незначительна и при равновесии флюид (раствор)-расплав их коэффициенты распределения достаточно низки (см. [9] и др.), однако они становятся больше 1 в случае появления солевого водонасыщенного расплава (см. [10–12] и др.). Также установлено, что добавление в систему Li приводит к преимущественному перераспределению REE во фторидный расплав [10]. Присутствие Li в Bt-Arfгранитах Катугинского комплекса подтверждается

ДОКЛАДЫ АКАДЕМИИ НАУК том 487 № 1 2019

его высокими концентрациями в тёмноцветных минералах (Li₂O до 0.8 мас.% в арфведсонитах и 0,7 мас.% в биотитах) [3, 8]. Находки карбонатнофторидных включений в породообразующих минералах позволяют считать, что появление фторидного расплава происходило на магматической стадии формирования гранитов, что привело к обеднению вмещающих гранитов фтором и возникновению зональности арфведсонита (F ~ 2 мас.% в центре и н.п.о. в краевых частях зёрен). Остаётся открытым вопрос генетического взаимоотношения карбонатно-фторидных обособлений и алюмофторидных фаз, широко представленных в массиве (криолит, веберит, пахнолит и др.) как в виде округлых либо интерстициональных агрегатов, так и в виде жильных тел, но не содержащих значимые концентрации REE [2, 5, 8, 13].

Источники финансирования. Работа выполнена при поддержке РФФИ (проект 16–35–60054 мол_а_ дк). Микрозондовые исследования выполнены в рамках госзадания ИГМ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Осокин Е.Д., Алтухов Е.Н., Кравченко С.М. // Геология рудных месторождений. 2000. Т. 42. № 4. С. 389–396.
- 2. Скляров Е.В., Гладкочуб Д.П., Котов А.Б. и др. // Тихоокеанская геология. 2016. Т. 35. № 3. С. 9–22.
- Gladkochub D., Donskaya T., Sklyarov E., et al. // Ore Geology Reviews. 2017. V. 91. P. 246–263.
- 4. Донская Т.В., Гладкочуб Д.П., Скляров Е.В. и др. // Петрология. 2018. Т. 26. № 1. С. 52–71.
- 5. Архангельская В.В., Рябцев В.В., Шурига Т.Н. // Минеральное сырьё. Серия геолого-экономическая. М.: ВИМС, 2012. № 26. 192 с.
- 6. Савельева В.Б., Базарова Е.П., Хромова Е.А., Канакин С.В. // Зап. РМО. 2016. Т. 145. № 2. С. 1–19.
- 7. Савельева В.Б., Базарова Е.П., Хромова Е.А., Канакин С.В // Зап. РМО. 2017. Т. 146. № 4. С. 1–21.
- Шарыгин В.В., Зубкова Н.В., Пеков И.В. и др. // Геология и геофизика. 2016. Т. 57. № 8. С. 1511– 1526.
- 9. *Giere R*. Rare Earth Minerals: Chemistry, Origin and Ore Deposits. L.: Chapman and Hall, 1996. P. 105–150.
- 10. Алферьева Я.О., Граменицкий Е.Н., Щекина Т.И. // Геохимия. 2011. № 7. С. 713–728.
- 11. Граменицкий Е.Н., Щекина Т.И. // Петрология. 2005. № 1. С. 45-59.
- Veksler I.V., Dorfman A.M., Kamenetsky M., et al. // Geochim. Cosmochim. Acta. 2005. V. 69. № 11. P. 2847–2860.
- 13. Старикова А.Е., Шарыгин В.В., Скляров Е.В. // ДАН. 2017. Т. 472. № 2. С. 180–184.

Y-REE MINERALIZATION IN BIOTITE-ARFVEDSONITE GRANITES OF THE KATUGIN RARE-METAL DEPOSIT, TRANSBAIKALIA, RUSSIA A. E. Starikova^{1,2}, Corresponding Member of the RAS E. V. Sklvarov^{3,4}, V. V. Sharvgin^{1,2}

¹Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation ²Novosibirsk State University, Novosibirsk, Russian Federation ³Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation ⁴Far East Federal University, Vladivostok, Russian Federation

Received October 10, 2018

We provide the results of study of the extremely enriched in Y-REE carbonate-fluorine isolations from biotitearfvedsonite granite of the Katugin rare metal deposit. New chemical data of isolations mineral phases – gagarinite-(Y), tveitite-(Y), fluocerite-(Ce), basnaesite, fluornatropyroclore, are delivered. Carbonate-fluoride globule in quartz of hosting granite gives possibility to estimate crystallization order. This finding might be the evidence of silicate-fluorine immiscibility suggested before for Y-REE segregations in the Katugin granites. Fluorine melt segregation took likely place at the magmatic stage of biotite-arfvedsonite granite formation. It causes host granite depletion with fluorine and redistribution of REE and Y in fluorine salt melt.

Keywords: Katugin ore deposit, alkaline granite, liquation, gagarinite-(Y), bastnaesite, fluorcerite-(Ce), fluornatropyrochlore.