УДК 547.639.5+547-305.1+544.135+547.891.1

НОВЫЙ ПОДХОД К СИНТЕЗУ ТИАКРАУНОВ НА ТИАКАЛИКС[4]АРЕНОВОЙ ПЛАТФОРМЕ А. А. Муравьев^{1,*}, А. Т. Якупов², С. Е. Соловьева^{1,2},

А. А. Муравьев , А. І. Якупов , С. Е. Соловьева , член-корреспондент РАН И. С. Антипин^{1,2}

Поступило 26.03.2019 г.

Предложена новая стратегия синтеза тиакаликс[4]монотиакраун-эфиров в стереоизомерной форме *1,3-альтернат*, которая была успешно реализована на примере макроциклизации нижнего обода 3-бромпропокси-замещённого тиакаликсаренас дитиолами.

Ключевые слова: тиакрауны, тиакаликс[4]арены, дивергентный подход, реакция Мицунобу.

DOI: https://doi.org/10.31857/S0869-56524873262-265

Управление распознаванием и связыванием биомолекул и ионов металлов является одним из важнейших направлений исследований в супрамолекулярной химии и направлено на создание принципиально новых подходов в материаловедении и биомедицине. Основной подход к созданию органических рецепторов заключается в пространственной предорганизации на одной молекуле нескольких связывающих фрагментов, способных к комплементарному и многоцентровому взаимодействию с субстратом по принципу ключ-замок [1, 2]. Одной из активно используемых в настоящее время молекулярных платформ для конструирования таких молекул являются каликсареновые макроциклы, имеющие несколько реакционных центров и стереоизомерных форм, что позволяет в широких пределах варьировать пространственную структуру рецепторной молекулы, подстраивая её под геометрические и энергетические требования субстрата [3, 4].

В этом контексте каликскраун-эфиры, объединяющие в своей структуре два хорошо известных рецепторных фрагмента, показывают уникальную комплексообразующую способность по отношению к жёстким ионам металлов и ряду биомолекул как в растворе [5–7], так и в составе монослоёв Ленгмюра [8, 9]. Замена в краун-эфирном фрагменте кислорода на мягкие атомы серы может существенно изменить субстратную селективность взаимодействия и вовлечение в связывание тиофильных ионов и функциональных групп.

¹ Институт органической и физической химии им. А.Е. Арбузова ФИЦ Казанский научный центр

Российской Академии наук, Казань

Традиционная стратегия синтеза тиакраун-эфиров на платформе каликсарена заключается в макроциклизации тиопроизводных олигоэтилегликолей с незамещёнными (тиа)каликс[4]аренами (структуры типа I, схема 1) [10]. Нами предложен альтернативный путь, который позволяет использовать в макроциклизации более доступные тиоэфиры с меньшим числом звеньев. Это достигается за счёт предварительного формирования на каликсарене структурных звеньев краун-эфирного фрагмента. Кроме того, данный подход даёт возможность изменять расстояние между каликсареновым и краун-эфирными частями молекулы, варьируя количество метиленовых спейсеров в прекурсоре. Это критически важно, поскольку степень удалённости рецепторного фрагмента от макроциклической платформы будет влиять на эффективность и избирательность связывания каликс[4]тиакрау-

Схема 1

² Казанский федеральный университет

^{*}E-mail: antonm@iopc.ru

нами (структуры типа **II**, схема 1) различных субстратов. Каликс[4]тиакраун-эфирные производные с длинноцепными алкильными фрагментами на нижнем ободе могут также представлять интерес в качестве рецепторов на ионы переходных металлов в составе ультратонких плёнок Ленгмюра.

В данной работе представлен дивергентный подход к дизайну тиакаликс[4]тиакраун-эфиров с варьируемым расстоянием краун-эфирного фрагмента от макроциклической платформы (структуры типа II) на примере синтеза тиакаликс-монотиакраун-эфиров в конфигурации 1,3-альтернат 4, 5, содержащих два длинноцепных додецильных заместителя на нижнем ободе макроцикла (схема 2). Прежде всего мы отказались от формирования монокраун-тиоэфирного фрагмента на первой стадии, поскольку реакция исходного тиакаликс[4]арена с бис-электрофилами (например, бромидами, тозилатами) приводит к целевым продуктам внутримолекулярной сшивки фенольных гидроксилов с крайне низкими выходами [10], что, возможно, связано с образованием бискаликсаренов (межмолекулярная сшивка). В связи с этим на первом этапе была проведена реакция незамещённого тиакаликс[4]арена 1 с додеканолом в условиях реакции Мицунобу [11] в присутствии трифенилфосфина $(T\Phi\Phi)$ и диэтилазадикарбоксилата (ДЭАД), в результате чего с выходом, близким к количественному, был получен дистально дизамещенный продукт 2. Дальнейшая функционализация соединения 2 по реакции Мицунобу ω-бромоспиртами также с высокими выходами (83 и 91%) позволила получить прекурсоры **3a**, **36**.

Заключительный этап синтеза состоял в макроциклизации бром-замещённых макроциклов 3 дитиолами. Оказалось, что длина спейсера, соединяющего атом брома с макроциклом, имеет определяющее значение. В реакции макроцикла За, имеющего спейсер из двух метиленовых звеньев, с тиолами образуется сложная реакционная смесь, в которой, по данным масс-спектрометрии, присутствуют как целевой продукт, так и продукты полного и частичного снятия бромалкильных групп с тиакаликсареновой платформы (схема 2). Это может быть связано с двумя основными причинами. Во-первых, относительной лёгкостью снятия О-алкильных групп в присутствии оснований, что было нами недавно обнаружено [12]. Во-вторых, низкой реакционной способностью бромэтильных групп по отношению к нуклеофилам, которая отмечалась ранее и обусловлена стерическими препятствиями соседних трет-бутильных групп подходу нуклеофила [13, 14].

В отличие от соединения **3a**, взаимодействие бромпропокси-производного **36**, имеющего более удалённые от макроциклической платформы связи С-Вг, с дитиолами привело к образованию целевых тиакраун-эфиров. В реакции с ди(этиленгликоль) дитиолом с высоким выходом (72%, схема 1) был выделен каликс[4]тиакраун-эфир **4**. Неожиданный результат был получен при замене атома кислорода в *бис*-тиоле на дополнительный атом серы. Выход

Схема 2

целевого каликс[4]тиакраун-эфира 5 в случае *бис*(2меркаптоэтил)сульфида уменьшился до 32%. Такое уменьшение выхода реакции может быть связано с темплатным эффектом присутствующего в реакционной смеси катиона калия, поскольку в качестве основания использовался K₂CO₃. Замена атома кислорода на мягкую серу привела к ослаблению межмолекулярных взаимодействий катиона калия с реагентом и предорганизации последнего для образования краун-эфирной структуры. Строение полученных соединений было подтверждено данными ¹Н и ¹³С ЯМР, ИК-спектроскопии и MALDI ТОF масс-спектрометрии (табл. 1). Полная конверсия соединения **2** в бром-производные **3** подтверждается исчезновением сигналов протонов ОН-групп в области 7,93 м.д. ЯМР ¹Н спектра и полосы поглощения в области 3393 см⁻¹. На изменение конформации макроцикла с *конуса* на *1,3-альтернат* указывают пары синглетов протонов бензольных колец и *трет*-бутильных групп, разница

Таблица 1. Спектральные характеристики и константы соединений 2-5*

Соединение**	¹ Н ЯМР (CDCl ₃ , δ, м.д., <i>J</i> /Гц). ¹³ С ЯМР (CDCl ₃ , δ, м.д.). ИК (v, см ⁻¹). MALDI TOF, <i>m</i> / <i>z</i>
2	¹ Н ЯМР: 7,93 (с, 2H, OH); 7,65 (с, 4H, H _{аром}); 6,95 (с, 4H, H _{аром}); 4,50 (т, 4H, <i>J</i> 8,0; OCH ₂); 2,00 (м, 4H, CH ₂); 1,55 (м, 8H, CH ₂); 1,42 (м, 4H, CH ₂); 1,34 (с, 18H, <i>t</i> -Bu); 1,26 (м, 24H, CH ₂); 0,88 (т, 6H, <i>J</i> 8,0; CH ₃); 0,79 (с, 18H, <i>t</i> -Bu)
	¹³ C ЯМР: 156,4; 155,9; 147,7; 142,6; 134,4; 132,8; 129,0; 122,2; 75,8; 34,2; 34,0; 31,9; 31,5; 30,9; 30,1; 29,8; 20, 8: 20, 7: 20, 6: 20, 5: 25, 0: 22, 8: 14, 2
	$E^{29,6}, 29,7, 29,0, 29,0, 29,0, 23,9, 22,6, 14,2$ $MK: 3393 (v_{OH}), 2926 (v_{Ar-H}), 1263 (v_{O-C}).$ MALDI TOF: 1112,2 [M+Na] ⁺ . $T_{III} $ 83 °C. R_f (rekcah: EtOAc = 8:1) 0,90
3a	¹ Н ЯМР: 7,36 (с, 4H, H _{аром}); 7,29 (с, 4H, H _{аром}); 4,07 (т, <i>J</i> 8,2; 4H, OCH ₂); 3,83 (т, <i>J</i> 8,0; 4H, OCH ₂); 2.54 (т, <i>J</i> 8,3; 4H, CH ₂ Br); 1,31 (с, 18H, <i>t</i> -Bu); 1,28 (с, 18H, <i>t</i> -Bu); 1,20 (м, 40H, CH ₂); 0,89 (т, 6H, <i>J</i> 7,0; CH ₂)
	¹³ C 3 MP: 155,9; 155,8; 146,6; 146,4; 128,3; 127,9; 127,9; 126,9; 68,7; 67,1; 34,5; 34,4; 32,8; 32,2; 31,6; 31,6; 20, 2: 20, 2: 20, 0: 20, 0: 20, 5: 28, 8: 22, 8: 14, 2
	^{30,9, 30,2, 29,9, 29,9, 29,9, 29,9, 29,9, 20,0, 22,0, 14,2} $MK: 2924 (v_{Ar-H}), 1265 (v(O-CH_2)). MALDI TOF: 1270,7 [M+H]^+. 1291,6 [M+Na]^+; 1308,7 [M+K]^+.$ $T_{IIII} 162 °C. R_f (reксан: EtOAc = 9:1) 0,9$
36	¹ Н ЯМР: 7,33 (с, 4H, H _{аром}); 7,32 (с, 4H, H _{аром}); 4,01 (т, <i>J</i> 8,2; 4H, OCH ₂); 3,77 (т, <i>J</i> 8,0; 4H, OCH ₂); 3,06 (т, <i>J</i> 8,1; 4H, CH ₂ Br); 1,63 (т, <i>J</i> 8,1; 4H, CH ₂); 1,31 (с, 18H, <i>t</i> -Bu); 1,28 (с, 18H, <i>t</i> -Bu); 1,25 (м, 40H, CH ₂); 0,90 (т, 6H, <i>J</i> 7,3; CH ₃) ¹³ С ЯМР: 155,8; 155,8; 146,1; 146,1; 128,5; 127,9; 127,8; 126,8; 68,7; 67,2; 34,6; 34,4; 32,8; 32,1; 31,6; 31,5;
	30,9; 30,2; 29,9; 29,8; 29,5; 28,8; 26,0; 22,9; 14,3 ИК: 2924 (v_{Ar-H}), 1266 (v_{O-C}). MALDI TOF: 1319,3 [M+Na] ⁺ , 1335,2 [M+K] ⁺ . $T_{пл}$ 158 °C. R _f (гексан: EtOAc = 9:1) 0,85
4	¹ H ЯМР: 7,31 (c, 4H, H_{apom}); 7,26 (c, 4H, H_{apom}); 3,94 (r, 4H, <i>J</i> 8,0; OCH ₂); 3,79 (r, 4H, <i>J</i> 8,0; OCH ₂); 3,59 (r, 4H, <i>J</i> 8,4; OCH ₂); 2,89 (c, 4H, CH ₂); 2,63 (r, 4H, <i>J</i> 8,2; SCH ₂); 2,36 (r, 4H, <i>J</i> 6,4; SCH ₂); 1,30 (c, 18H, <i>t</i> -Bu); 1,27 (c, 18H, <i>t</i> -Bu); 1,14 (m, 40H, CH ₂); 0,89 (r, 6H, <i>J</i> 8.5; CH ₃) ¹³ C ЯМР: 155,5; 155,3; 145,9; 145,7; 128,3; 128,1; 128,0; 127,9; 69,5; 69,4; 38,7; 34,5; 34,4; 32,1; 31,6; 31,5; 30,1; 29,9; 29,8; 29,5; 29,0; 26,0; 22,9; 14,3
	$MK: 2923 (V_{Ar-H}), 1449 (V_{O-C}).$ MALDI TOF: 1241,0 [M-C ₄ H ₈ O+K] . T_{IIII} 142 °C. K _f (lekcal: ElOAC = 4:1) 0,73
5	¹ H 9MP: 7,31 (c, 4H, H_{apom}); 7,31 (c, 4H, H_{apom}); 3,94 (r, 4H, <i>J</i> 7,2; OCH ₂); 3,79 (r, 4H, <i>J</i> 7,2; OCH ₂); 2,80 (M, 8H, CH ₂); 2,29 (r, 4H, <i>J</i> 6,4; SCH ₂); 1,30 (c, 18H, <i>t</i> -Bu); 1,27 (c, 18H, <i>t</i> -Bu); 1,23 (M, 40H, CH ₂); 0,89 (r, 6H, <i>J</i> 6,8; CH ₃) ¹³ C 9MP: 155,7; 155,6; 145,9; 145,7; 128,1; 127,9; 127,6; 126,1; 68,4; 67,3; 38,5; 34,4; 34,2; 31,9; 31,5; 31,3; 30,0; 30,0; 29,8; 29,6; 29,4; 25,8; 22,7; 14,1 MK: 2924 ($v_{Ar=H}$), 1443 ($v_{O=C}$). MALDI TOF: 1217 [M-C ₅ H ₁₀ S+H] ⁺ . T_{rrr} 145 °C. R _f (rekcah: EtOAc = 4:1)
	0,73

Примечание. * ЯМР-эксперименты были проведены на спектрометрах Avance-400 и 600, "Bruker", в растворе CDCl₃ при температуре 30 °C. ИК-спектры снимали на Фурье-спектрометре Vector 22, "Bruker", в таблетках КВг. Масс-спектры регистрировали на масс-спектрометре MALDI-TOF Ultraflex III. TCX проводили на пластинках "Silufol UV 254". ** **2**, 1^{5} , 3^{5} , 5^{5} , 7^{5} -*mempa-mpem-бутил*- 3^{2} , 7^{2} -*бис*(*додецилокси*)-2,4,6,8-*mempamua*-1,3,5,7(1,3)-*mempaбензенациклооктафан*- 1^{2} , 5^{2} -*диол*; **3а**, 1^{2} , 5^{2} -*бис*(2-*бромоэтокси*)- 1^{5} , 3^{5} , 5^{5} , 7^{5} -*mempa-mpem-бутил*- 3^{2} , 7^{2} -*бис*(2-*бромоэтокси*)- 1^{5} , 3^{5} , 5^{5} , 7^{5} -*mempa-mpem-бутил*- 3^{2} , 7^{2} -*бис*(2-*бромоэтокси*)- 1^{5} , 3^{5} , 5^{5} , 7^{5} -*mempa-mpem-бутил*- 3^{2} , 7^{2} -*бис*(2-*бромоэтокси*)-2,4,6,8-*mempamua*-1,3,5,7(1,3)-*mempaбензенациклооктафан*; **36**, 1^{2} , 5^{2} -*бис*(3-*бромопропокси*)- 1^{5} , 3^{5} , 5^{5} , 7^{5} -*mempa-mpem-бутил*- 3^{2} , 7^{2} -*бис*(2*одецилокси*)-2,4,6,8-*mempamua*-1,3,5,7(1,3)-*mempaбензенациклооктафан*; **4**, 1^{5} , 3^{5} , 5^{5} , 7^{5} -*mempa-mpem-бутил*- 1^{2} , 5^{2} -*бис*(2*одецилокси*)- 3^{2} , 7^{2} -(6-*окса*-3,9-2*ишиакраун*)-1,3,5,7(1,3)-*mempaбензенациклооктафан*; **5**, 1^{5} , 3^{5} , 5^{5} , 7^{5} -*mempa-mpem-бутил*- 1^{2} , 5^{2} -*бис*(2*одецилокси*)- 3^{2} , 7^{2} -(3,6,9-2, 7^{2} , 7^{2} , 7^{2} -(3,6,9-3, 7^{2} ,7

химических сдвигов в которых изменяется с 0,70 и 0,55 м.д. в соединении **2** до 0,01-0,07 и 0,03 м.д. соответственно в продуктах **3**.

В масс-спектрах продуктов **4** и **5** детектируются пики молекулярных ионов, фрагментированных по связям C–S, с m/z 1241,0 [M–C₄H₈O+K]⁺ (**4**) и m/z1217 [M–C₅H₁₀S+H]⁺ (**5**), что позволяет идентифицировать соединения **4** и **5** как монотиакраунэфиры. О замещении атомов брома в соединении **36** на тиакраун-эфирный фрагмент в соединениях **4** и **5** указывают данные ЯМР-спектров, где сигнал протонов терминальной CH₂-группы смещается в сильные поля с 3,06 до 2,36–2,29 м.д., а также появляются сигналы краун-эфирного фрагмента в областях 3,59 и 2,63 м.д. (соединение **4**) и 2.80 м.д. (соединение **5**).

Таким образом, предложена новая стратегия синтеза тиакаликс-монотиакраун-эфиров, которая была успешно применена на примере макроциклизации дитиолами нижнего обода 3-бромпропоксизамещённого тиакаликсарена **36**, содержащего додецильные фрагменты, в стереоизомерной форме *1,3-альтернат*.

Благодарности. Авторы благодарят ЦКП-САЦ ФИЦ КазНЦ РАН за техническую поддержку проведённых исследований.

Источники финансирования. Работа поддержана Программой фундаментальных исследований Президиума Российской Академии наук 14П и частично финансировалась за счёт субсидий, выделенных Казанскому федеральному университету по государственной поддержке в сфере научной деятельности (4.1493.2017/6.7).

СПИСОК ЛИТЕРАТУРЫ

- Multivalency: Concepts, Research & Applications / J. Huskens, L.J. Prins, R. Haag, B.J. Ravoo. Eds. Chichester: Wiley, 2018. 393 p.
- 2. *Wang B., Anslyn E.V.* Chemosensors. Hoboken: Wiley, 2011. 496 p.
- 3. Calixarenes and Beyond / P. Neri, J.L. Sessler. M.-X. Wang. Eds. N.Y.: Springer, 2016. 1062 p.
- 4. *Ovsyannikov A., Solovieva S., Antipin I., et al.* // Coord. Chem. Rev. 2017. V. 352. P. 151–186.
- Solovieva S., Muravev A., Zakirzyanov R., et al. // Macroheterocycles. 2012. V. 5. P. 17–22.
- Van Leeuwen F. W.B., Beijleveld H., Velders A.H., et al. // Org. Biomol. Chem. 2005. V. 3. P. 1993–2001.
- Muravev A., Galieva F., Bazanova O., et al. // Supramol. Chem. 2016. V. 28. P. 589–600.
- Muravev A., Solovieva S., Kochetkov E., et al. // Macroheterocycles. 2013. V. 6. P. 302–307.
- Capuzzi G., Fratini E., Dei L., et al. // Colloid Surf. A. 2000. V. 167. P. 105–113.
- Csokai V., Balazs B., Bitter I., et al. // Tetrahedron. 2006. V. 62. P. 10215–10222.
- 11. Van Leeuwen F.W.B., Beijleveld H., Kooijman H., et al. // J. Org. Chem. 2004. V. 69. P. 3928–3936.
- 12. *Solovieva S.E., Popova E.V., Omran O.A., et al.* // Russ. Chem. Bull. 2011. V. 60. P. 486–498.
- Muravev A.A., Laishevtsev A.I., Galieva F.B., et al. // Macroheterocycles. 2017. V. 10. P. 203–214.
- 14. Burilov V.A., Nugmanov R.I., Ibragimova R.R., et al. // Mend. Commun. 2015. V. 25. P. 177–179.

A NEW APPROACH TO THE SYNTHESIS OF THIACROWNS ON A THIACALIX[4]ARENE SCAFFOLD A. A. Muravev¹, A. T. Yakupov², S. E. Solovieva^{1,2}, Corresponding Member of the RAS I. S. Antipin^{1,2}

¹Arbuzov Institute of Organic and Physical Chemistry of FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russian Federation ²Kazan Federal University, Kazan, Russian Federation

Received March 26, 2019

A new strategy of synthesis of thiacalix[4]monothiacrown-ethers in *1,3-alternate* stereoisomeric form has been suggested and implemented through macrocylization of the lower rim of 3-bromopropoxy-substituted thiacalix-arene by dithiols.

Keywords: thiacrowns, thiacalix[4]arenes, divergent approach, Mitsunobu reaction.