——— ФИЗИКА =

УДК 535.375.54

КАСКАДНЫЕ $\chi^{(3)}$ -НЕЛИНЕЙНО-ЛАЗЕРНЫЕ ПРОЦЕССЫ В НОВОМ ВКР-АКТИВНОМ КРИСТАЛЛЕ $Ca_2MgSi_2O_7$

Член-корреспондент РАН А. А. Каминский

Поступило 18.03.2019 г.

Сообщается об обнаружении вынужденного комбинационного рассеяния в магниевом силикате Ca₂MgSi₂O₇, входящем в семейство D_{2d}^3 -тетрагональных ацентричных кристаллов со структурой мелилита. Зарегистрированные компоненты стоксового и антистоксового $\chi^{(3)}$ -нелинейного лазинга кристалла идентифицированы с двумя его BKP-активными модами $\omega_{BKP1} \sim 908 \text{ cm}^{-1}$ и $\omega_{BKP2} \sim 668 \text{ cm}^{-1}$, которые также проявились в генерации комбинированных фононных частот $\omega_{BKP3C} \sim 170 \text{ cm}^{-1}$ и $\omega_{BKP4C} \sim 1270 \text{ cm}^{-1}$. *Ключевые слова*: вынужденное комбинационное рассеяние, стоксов и антистоксов нелинейный лазинг, Ca₂MgSi₂O₇ BKP-активный кристалл.

DOI: https://doi.org/10.31857/S0869-56524875499-501

1. Обнаружение $\chi^{(3)}$ -нелинейных свойств в кристаллах-матрицах для Ln³⁺-лазант-ионов расширяет знания об их фундаментальных физических свойствах и обогащает их прикладной потенциал, создавая, в частности, условия для реализации на их основе схем лазеров с само-ВКР (ВКР — вынужденное комбинационное рассеяние) преобразованием частоты генерации (см., например, [1–3]). Возбуждение ВКР в кристаллах также выявляет их $\chi^{(3)}$ -активные колебательные моды, обеспечивая изучение связанных с ними разнообразных $\chi^{(3)}$ -нелинейных фотонфононных процессов (см., например, [4, 5]), открывает возможности генерировать октавной протяжённостью спектральные гребёнки ($\chi^{(3)}$ -combs) для фурье-синтеза ультракоротких импульсных форм [6]. Отмеченные возможности стимулировали постановку настоящей работы. Для исследования был выбран D_{2d}^3 -тетрагональный ацентричный кристалл Са₂MgSi₂O₇, ранее известный как лазерная матрицаоснова для генерирующих Nd³⁺-ионов [7]. Его некоторые физические свойства приведены в табл. 1.

2. Исследования $\chi^{(3)}$ -нелинейного стационарного (steady-state) лазинга были проведены при комнатной температуре в условиях однопроходной (безрезонаторной) схемы накачки с образцом Ca₂MgSi₂O₇ в виде бруска ($30 \times 5 \times 4$ мм) с кристаллографической осью *с* вдоль большего его размера с полированными торцами без просветляющего покрытия. Возбуждение BKP-генерации осуществлялось пикосекундным ($\tau_{\rm B} \sim 60$ пс) излучением ($\lambda_{\rm B} = 0,53207$ мкм) вто-

Институт кристаллографии

"Кристаллография и фотоника"

Российской Академии наук, Москва

рой гармоники Nd³⁺: Y₃Al₅O₂-лазера с внешнем KH_2PO_4 -удвоителем частоты. Спектральный состав нелинейной генерации титульного кристалла изучался с помощью дифракционного монохроматора McPherson-270 с Hamamatsu Si-CCD-сенсором S3923-1024Q. Из зарегистрированных спектров был выбран один (рис. 1), который показывает проявление всех фононных мод кристалла Ca₂MgSi₂O₇, промоутирующих его $\chi^{(3)}$ -нелинейный лазинг в применённых условиях возбуждения. Результаты анализа зарегистрированных линий спектра в систематизированном виде представлены в табл. 2.

Фактор-групповой анализ нормальных колебаний ряда кристаллов-мелилитов, в том числе силикатов (см., например, [12]), изоструктурных D_{2d}^3 -тетрагональному Ca₂MgSi₂O₇, показал, что среди 69 их оптических фононных мод $\Gamma_{O(69)} = 10A_1 + 6A_2 +$ + 7B₁ + 10B₂ + 18E A₁-моды могут принадлежать колебаниям их структурных групп Si₂O₇. По аналогии с результатами работы [4, 12] обнаруженные фононные моды изученного кристалла Ca₂MgSi₂O₇ $\omega_{BKP1} \sim 908 \text{ см}^{-1}$ можно идентифицировать полносимметричным v_s(SiO₃) A₁-колебаниям, а моды $\omega_{BKP2} \sim 668 \text{ см}^{-1}$ его мостиковым A₁-колебаниям v_s(SiOSi).

3. В работе открыт и исследован новый ВКР-активный кристалл $Ca_2MgSi_2O_7$. Получены фундаментальные знания о его $\chi^{(3)}$ -промоутирующих фононных колебаниях и свойствах многофононной стоксовой и антистоксовой генерации высокого порядка. Обнаруженные фундаментальные нелинейные свойства кристалла придали ему статус многофункциональной матрицы-основы потенциально одновременно лазер- (с Ln^{3+} -ионами) и ВКР-активного кристалла.

Федерального научно-исследовательского центра

E-mail: kaminalex@mail.ru

2 0 2 1	
Пространственная группа [8]	$D_{2d}^3 - P4 - 2_1 m \ (N_2 \ 113)$
Параметры элементарной	a = b = 7,8348(3);
ячейки, Å [8]*	c = 5,0087(2)
Число формульных единиц	Z=2
в элементарной ячейке [8]	
Температура плавления, °С**	~1454 [9]
Линейный оптический	Одноосный позитивный
характер и показатели	$(n_o < n_e)$
преломления***	
Нелинейность	$\chi^{(2)} + \chi^{(3)}$
Плотность, г/см	2,945 [8]
Микротвёрдость	5,5
по шкале Мооса	
Обнаруженные ВКР-активные	$\omega_{\rm BKP1} \sim 908$
фононные моды, см ⁻¹ ****	$\omega_{BKP2} \sim 668$
	$\omega_{BKP3C} \sim 170$
	$\omega_{\rm BKP4C} \sim 1270$

Таблица 1. Избранные кристаллофизические свойства кристалла Ca₂MgSi₂O₇

Примечание. * Близкими кристаллографическими свойствами обладает природный кристалл-минерал окерманит (акерманит, Akermanit).

** В области температур 345—360 К наблюдается IC \leftrightarrow N (incommensurate-normal) фазовый переход [7].

Ì	Ċ	Ċ	данные	ИЗ	[10]:	

Длина волны, мкм	n _o	n _e
0,4158	1,6478	1,6555
0,4680	1,6433	1,6512
0,4800	1,6418	1,6496
0,5086	1,6388	1,6498
0,5460	1,6356	1,6437
0,5760	1,6333	1,6414
0,6438	1,6297	1,6379

**** Частоты оригинальных фононных мод $\omega_{BKP1} \sim 908 \text{ cm}^{-1}$ и $\omega_{BKP2} \sim 668 \text{ cm}^{-1}$ проявляются в спектрах спонтанного комбинационного (рамановского) рассеяния. Комбинированные моды (combined modes) $\omega_{BKP3C} \sim 170 \text{ cm}^{-1}$ и $\omega_{BKP4C} \sim 1270 \text{ cm}^{-1}$ являются результатом $\chi^{(3)}$ -нелинейного когерентного взаимодействия двух возбуждённых оригинальных мод.

Благодарности. Автор с благодарностью отмечает участие О. Лакса и Х. Рии в ВКР-эксперименте.

Источники финансирования. Исследования входят в план фундаментальных исследований Института кристаллографии ФНЦ "Кристаллография и фотоника" РАН и в программу Президиума РАН "Экстремальные лазерные поля и их взаимодействие с веществом".

СПИСОК ЛИТЕРАТУРЫ

1. Basiev T. T., Vassiliev S. V., Doroshenko M. E., Osiko V.V., Puzikov V.M., Kosmuna M.B. // Opt. Lett. 2006. V. 31. № 1. P. 65–67.

Рис. 1. Фрагмент спектра $\chi^{(3)}$ -нелинейного лазинга D_{2d}^3 -тетрагонального кристалла $Ca_2MgSi_2O_7$, зарегистрированного для геометрии возбуждения c(a, a)c при пикосекундной лазерной накачке. Длины волн стоксовых и антистоксовых линий (линия возбуждения отмечена звёздочкой) даны в мкм. Спектральные эквидистантные зазоры между линиями указаны связующими скобками и обозначены BKP-активными фононными модами $\omega_{BKP1} \approx 908 \text{ см}^{-1}$, $\omega_{BKP2C} \approx 240 \text{ см}^{-1}$ и $\omega_{BKP4C} \approx 1576 \text{ см}^{-1}$ (см. также табл. 2).

- Kaminskii A.A., Bagayev S.N., Ueda K., Dong J., Eichler H.J. // Laser Phys. Lett. 2010. V. 7. № 4. P. 270-279.
- Cong Z., Liu Z., Qin Z., Zhang X., Zhang H., Li J., Yu H., Wang W. // Opt. Laser Technology. 2015. V. 73. № 1. P. 50–53.
- Kaminskii A.A., Rhee H., Lux O., Eichler H.J., Bohatý L., Becker P., Liebertz J., Ueda K., Shirakawa A., Koltashev V.V., Hanuza J., Dong J., Stavrovskii D.V. // Laser Phys. 2011. V. 8. № 12. P. 895–910.
- Kaminskii A.A., Haussühl E., Haussühl S., Lux O., Hanuza J., Rhee H., Kaltenbach A., Eichler H.J., Yoneda H., Shirakawa A., Ueda K. // Laser Phys. 2013. V. 23. № 9. P. 095806(19).
- Nazarkin A., Korn G. // Phys. Rev. A. 1998. V. 58. № 1. P. 61–64.
- Kaminskii A.A., Nakao H., Shirakawa A., Ueda K., Liebertz J., Becker P., Bohatý L. // Appl. Phys. B. 2011.
 V. 103. № 3. P. 629–635.
- Kusaka K., Hagiya K., Ohmasa M., Mukai M., Iishi K., Haga N. // Phys. Chem. Miner. 2001. V. 28. № 3. P. 150–166.
- Kaminskii A.A., Rhee H., Lux O., Kaltenbach A., Eichler H.J., Hanuza J., Bagayev S.N., Yoneda H., Shirakawa A., Ueda K. // Laser Phys. Lett. 2013. V. 10. № 7. P. 075803(5).

ДОКЛАДЫ АКАДЕМИИ НАУК том 487 № 5 2019

Стоксовый (St) и антистоксовый (ASt) $\chi^{(3)}$ -нелинейный лазинг		ВКР-активные фононные молы см ⁻¹				
в геометрии возбуждения $c(a, a)c^*$		Ditti ui	стивные фо			
Длина волны, мкм**	Линия	Процесс $\chi^{(3)}$ -лазинга***	ω_{BKP1}	ω_{BKP2}	ω _{BKP3C}	ω_{BKP4C}
0,4852	ASt ₂₋₁	$\omega_{\rm B} + 2\omega_{\rm BKP1} = \omega_{\rm ASt2-1}$	~908			
0,4909	ASt_{1-4}					~1576
0,4968	ASt ₂₋₂	$\omega_{\rm B} + 2\omega_{\rm BKP2} = \omega_{\rm ASt2-2}$		~668		
0,5014	$St_{1-3C}\{St_{1-1}\}$		~908		~240	
0,5076	ASt_{1-1}	$\omega_{\rm B} + \omega_{\rm BKP1} = \omega_{\rm ASt1-1}$	~908			
0,5138	ASt_{1-2}	$\omega_{\rm B} + \omega_{\rm BKP2} = \omega_{\rm ASt1-2}$		~668		
0,5254	ASt_{1-3}	$\omega_{\rm B} + \omega_{\rm BKP3C} = \omega_{\rm ASt1-3C}$			~240	
0,53207	$\lambda_{_{\mathrm{B}}}$	ω _B				
0,5390	St_{1-3C}	$\omega_{\rm B} - \omega_{\rm BKP3C} = \omega_{\rm St1-3C}$			~240	
0,5517	St_{1-2}	$\omega_{\rm B} - \omega_{\rm BKP2} = \omega_{\rm St1-2}$		~668		
0,5591	St_{1-1}	$\omega_{\rm B} - \omega_{\rm BKP1} = \omega_{\rm St1-1}$	~908			
0,5667	$St_{1-3C}\{St_{1-1}\}$	$\omega_{\rm B} - (\omega_{\rm BKP1} + \omega_{\rm BKP3C}) = \omega_{\rm St1-3C\{St1-1\}}$	~908		~240	
0,5728	St_{2-2}	$\omega_{\rm B} - 2\omega_{\rm BKP2} = \omega_{\rm St2-2}$		~668		
0,5808	St_{1-4C}	$\omega_{\rm B} - \omega_{\rm BKP4C} = \omega_{\rm St1-4C}$				~1576
0,5890	St_{2-1}	$\omega_{\rm B} - 2\omega_{\rm BKP1} = \omega_{\rm St2-1}$	~908			

Таблица 2. Спектральный состав стационарного $\chi^{(3)}$ -нелинейного лазинга D_{2d}^3 -тетрагонального кристалла Ca₂MgSi₂O₇ в условиях пикосекундного возбуждения ($\lambda_{\rm B} = 0.53207$ мкм) при комнатной температуре

Примечание. * В обозначении *c*(*a*, *a*)*c* в скобках указано направление поляризации (вдоль *a*-оси) излучения накачки и ВКР-генерации, за скобками направление (вдоль *c*-оси) накачки и ВКР-генерации (по предложению [11] для рамановских измерений).

** Точность измерения ±0,0003 мкм.

*** Схемы процессов приведены в сокращённой форме. Так, например, полная запись четырёхволнового параметрического процесса антистоксового лазинга ASt_{1-1} с длиной волны $\lambda_{ASt1-1} = 0,5076$ мкм будет $\omega_{\rm B} + \omega_{\rm BKP1} = [\omega_{\rm B} + \omega_{\rm B} - (\omega_{\rm B} - \omega_{\rm BKP1})] =$ $= [\omega_{\rm B} + \omega_{\rm B} - \omega_{\rm St1-1}] = \omega_{\rm ASt1-1}$ (здесь в квадратных скобках указаны три наиболее вероятные спектральные генерационные компоненты, обеспечивающие параметрический антистоксовый $\chi^{(3)}$ -лазинг).

- Bohatý L., Liebertz J. // Z. Kristallogr. 1982. V. 159. № 1–4. P. 277.
- Damen T.C., Porto S.P.S., Tell B. // Phys. Rev. 1966.
 V. 143. № 2. P. 570–574.

 Hanuza J., Ptak M., Mączka M., Hermanowicz R., Lorenc J., Kaminskii A.A. // J. Solid State Chem. 2012.
 V. 191. № 1. P. 90–101.

CASCADE $\chi^{(3)}$ -NONLINEAR PROCESSES IN NEW SRS-ACTIVE Ca₂MgSi₂O₇ CRYSTAL

Corresponding Member of the RAS A. A. Kaminskii

Shubnikov Crystallography Institute of the Russian Academy of Sciences, Moscow, Russian Federation

Received March 18, 2019

The observation of stimulated Raman scattering (SRS) in magnesium silicate Ca₂MgSi₂O₇, entering the family of D_{2d}^3 -tetragonal acentric crystals with the structure of melilite, is reported. The registered components of the Stokes and anti-Stokes $\chi^{(3)}$ -nonlinear crystal lasing are identified with two active SRS-modes $\omega_{SRS1} \approx 908 \text{ cm}^{-1}$ and $\omega_{SRS2} \approx 668 \text{ cm}^{-1}$, which also manifest in the generation of combined phonon modes $\omega_{SRS3C} \approx 170 \text{ cm}^{-1}$ and $\omega_{SRS4C} \approx 1270 \text{ cm}^{-1}$.

Keywords: stimulated Raman scattering (SRS), Stokes and anti-Stokes nonlinear lasing, $Ca_2MgSi_2O_7$ SRS-active crystal.