УДК 536.63

ТЕПЛОЁМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА SmFeGe₂O₇ В ОБЛАСТИ 350–1000 К

Л. Т. Денисова^{1,*}, член-корреспондент РАН А. Д. Изотов², Ю. Ф. Каргин³, Л. А. Иртюго¹, В. В. Белецкий¹, Н. В. Белоусова¹, В. М. Денисов¹

Поступило 19.04.2019 г.

Германат SmFeGe₂O₇ получен твердофазным синтезом из стехиометрических смесей исходных оксидов многоступенчатым обжигом в интервале температур 1273–1473 К. Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на теплоёмкость оксидного соединения. На основании зависимости $C_p = f(T)$ рассчитаны его термодинамические свойства.

Ключевые слова: германат железа—самария, твердофазный синтез, дифференциальная сканирующая калориметрия, высокотемпературная теплоёмкость, термодинамические свойства.

DOI: https://doi.org/10.31857/S0869-56524876640-643

Германатные соединения тортвейтитового и тортвейтитоподобного типов перспективны для использования в радиоэлектронике, оптических преобразователях и др. [1–3]. С этим, по-видимому, связан интерес исследователей к подобным материалам [3–6]. Следует отметить, что соединения RFeGe₂O₇ (R – редкоземельный элемент) обладают моноклинной кристаллической структурой, а пространственная группа зависит от радиуса редкоземельного иона r^{3+} : для La—Gd характерна пр. гр. $P2_1/c$, a Tb— Yb, Y — $P2_1/m$ [2, 3]. К подобным соединениям относится и SmFeGe₂O₇. Для него имеются данные о кристаллической структуре и магнитных свойствах [4, 6], теплоёмкости при низких температурах (2–20 К) [6]. Фазовые взаимоотношения в системах R₂O₃-Fe₂O₃-GeO₂ не исследованы. Имеются только данные по изотермическим сечениям системы Fe-Fe₃O₄-Fe₂GeO₄ при 1173 и 1273 К [7]. В то же время для оптимизации условий синтеза и уточнения фазовых равновесий методами термодинамики необходимы сведения об их термодинамических свойствах при высоких температурах.

В настоящей работе впервые измерена высокотемпературная теплоёмкость SmFeGe₂O₇ в области 350–1000 К. Полученные экспериментальные данные позволили вычислить термодинамические функции оксидного соединения (изменения энтальпии, энтропии и приведённой энергии Гиббса). Установленная корреляция между ионными радиусами и параметрами элементарной ячейки соединений RFeGe₂O₇ (La–Gd) позволила впервые оценить параметры структуры соединения PmFeGe₂O₇, которое ещё не получено.

Германат SmFeGe₂O₇ получен твердофазным синтезом из Sm₂O₃, Fe₂O₃ (ос.ч) и GeO₂ (99,996%). Для этого стехиометрическую смесь из предварительно прокалённых при T = 1173 К оксидов перетирали в агатовой ступке и прессовали в таблетки. Затем их обжигали на воздухе при 1273 K (40 ч), 1373 K (100 ч) и 1473 К (60 ч). Для увеличения полноты протекания твердофазного взаимодействия таблетки через каждые 20 ч перетирали и снова прессовали. Согласно [8] высокие температуры твердофазного синтеза германатов РЗЭ приводят к испарению GeO₂ и отклонению состава от стехиометрии. Учитывая это, синтез проводили в тиглях с крышкой. Время синтеза и введение дополнительного количества GeO₂ подбирали экспериментально. Состав полученных образцов контролировали с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD, "PANalytical", Нидерланды, Си K_{α} -излучение). Регистрацию дифрактограмм выполняли в угловом интервале 20 = 10-110° с шагом 0,013°. Дифрактограмма синтезированного SmFeGe₂O₇ показана на рис. 1. Параметры решётки полученного соединения определены аналогично [9].

Измерение теплоёмкости SmFeGe $_2O_7$ проводили на приборе STA 449 C Jupiter ("NETZSCH", Германия). Методика экспериментов подобна описанной в [10]. Полученные результаты обрабатывали с по-

¹Сибирский федеральный университет, Красноярск

² Институт общей и неорганической химии

им. Н.С. Курнакова

Российской Академии наук, Москва

³ Институт металлургии и материаловедения

им. А.А. Байкова

Российской Академии наук, Москва

^{*}E-mail: antluba@mail.ru

Рис. 1. Профили рентгенограмм SmFeGe₂O₇ при комнатной температуре: *1* — экспериментальный, *2* — расчётный, *3* — разностный; штрихи указывают расчётные положения рефлексов.

мощью пакета программ NETZSCH Proteys Thermal Analysis и лицензионного программного инструмента Sistat Sigma Plot 12 ("Systat Soffware Inc.", США). Ошибка экспериментов не превышала 2%.

Параметры решётки синтезированного SmFeGe₂O₇ в сравнении с данными других авторов

Таблица 1. Параметры элементарной ячейки SmFeGe₂O₇ (пр. гр. *P*2₁/*c*, *Z* = 4)

Параметры	Наши данные	[4]	[6]
<i>a</i> , Å	7,1737(1)	7,18	7,1752(2)
b, Å	6,6053(2)	6,59	6,6080(2)
<i>c</i> , Å	12,8903(3)	12,93	12,8912(3)
β, град.	117,140(1)	117,3	117,110(1)
$V, Å^3$	543,54(2)		544,07(2)

приведены в табл. 1. Видно, что наблюдается хорошее согласие их между собой.

Авторы работы [6] считают, что зависимость объёма элементарной ячейки соединений RFeGe₂O₇ от ионного радиуса РЗЭ имеет линейный характер. При этом они объединили данные для обеих пространственных групп ($P2_1/c$ и $P2_1/m$) на одну прямую $V = f(r^{3+})$. По нашему мнению, эти результаты нужно представлять раздельно. Подтверждением этому служат данные, приведённые на рис. 2. В этом случае линейный характер имеют и зависимости $a(b, c, V) = f(r^{3+})$. Полученные результаты хорошо описываются линейными уравнениями

$$a = (5,47 \pm 0,08) + (1,51 \pm 0,07)r^{3+}, \tag{1}$$

$$b = (5,84 \pm 0,05) + (0,67 \pm 0,04)r^{3+}, \tag{2}$$

$$c = (10,52 \pm 0,06) + (2,09 \pm 0,05)r^{3+}, \tag{3}$$

$$V = (252, 4 \pm 10, 38) + (257, 1 \pm 9, 00)r^{3+}.$$
 (4)

Коэффициенты уравнений (1)–(4) равны соответственно 0,9931; 0,9961; 0,9988 и 0,9976. Наличие зависимостей (1)–(4) позволяет оценить параметры элементарной ячейки для соединения PmFeGe₂O₇, которое к настоящему времени ещё не получено: a = 7,19 Å, b = 6,61 Å, c = 12,91 Å, V = 546,5 Å³.

При построении графиков, приведённых на рис. 2, использовались следующие значения параметров элементарных ячеек: La и Pr [5], Nd — получено нами (хорошо соответствуют результатам [5]), Sm, Eu, Gd — получено нами (хорошо соответствуют [4]). Значения радиусов РЗЭ заимствованы из работы [11].

На рис. 3 показано влияние температуры на теплоёмкость SmFeGe₂O₇. На зависимости $C_p = f(T)$ нет экстремумов. Это позволяет допустить, что в ин-

Рис. 2. Зависимость параметров элементарной ячейки *a* (1), *b* (2), *c* (3), *V* (4) от ионного радиуса редкоземельных элементов цериевой подгруппы. Для PmFeGe₂O₇ показаны расчётные значения.

ДОКЛАДЫ АКАДЕМИИ НАУК том 487 № 6 2019

Рис. 3. Температурные зависимости удельной теплоёмкости SmFeGe₂O₇(1) и Sm₂Ge₂O₇(2).

тервале температур 350–1000 K у SmFeGe₂O₇ нет полиморфных превращений. По данным результатам получены температурные зависимости молярной теплоёмкости, которые могут быть описаны уравнением Майера—Келли

$$C_p = a + bT + T^{-2} = (252, 2 \pm 0, 48) + (41,91 \pm 0,50) \cdot 10^{-3}T - (41,38 \pm 0,39) \cdot 10^{5}T^{-2}.$$
 (5)

Коэффициент корреляции для уравнения (5) равен 0,9998, а максимальное отклонение от сглаживающей кривой 0,31%.

На рис. 3 для сравнения приведены данные по теплоёмкости $Sm_2Ge_2O_7$ [12]. Для того чтобы не учитывать различие в молярных массах соединений,

Таблица 2. Термодинамические свойства SmFeGe₂O₇

на этом рисунке приведены значения удельной теплоёмкости. Видно, что замещение части самария на железо приводит к увеличению теплоёмкости.

С использованием уравнения (5) по известным термодинамическим соотношениям рассчитаны термодинамические функции SmFeGe₂O₇. Эти результаты приведены в табл. 2.

Расчёт теплоёмкости SmFeGe₂O₇ при 298 К методом Неймана—Коппа [13] даёт значение C_p на 2,1% меньше экспериментальной величины, рассчитанной по уравнению (5), в то время как инкрементный метод Кумока [14] — на 2,5% выше.

Источник финансирования. Работа выполнена при финансовой поддержке исследований в рамках госзадания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017—2019 гг. Проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы".

СПИСОК ЛИТЕРАТУРЫ

- 1. Демьянец Л.Н., Лобачев А.Н., Емельченко Г.А. Германаты редкоземельных элементов. М.: Наука, 1980. 152 с.
- 2. Cascales C., Fernandez-Diaz M.T., Monge M.A., Bucio L. // Chem. Mater. 2002. V. 14. P. 1885–2003.
- Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S., et al. // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1–FF6.15.8.
- Миль Б.Д., Казей З.А., Рейман С.И. и др. // Вестн. МГУ. Сер. 3. Физика, астрономия. 1987. Т. 28. № 4. С. 95–98.

<i>Т</i> , К	C_p , Дж/(моль·К)	$H^{\circ}(T) - H^{\circ}(350 \text{ K}),$	$S^{\circ}(T) - S^{\circ}(350 \text{ K}),$	$\Phi^{\circ}(T) - \Phi^{\circ}(350 \text{ K}),$
		кДж/моль	Дж/(моль·К)	Дж/(моль·К)
350	233,0	_	-	-
400	243,1	11,91	31,81	2,02
450	250,5	24,26	60,89	6,97
500	256,5	36,95	87,61	13,71
550	261,5	49,90	112,3	21,57
600	265,8	63,09	135,2	30,10
650	269,6	76,47	156,7	39,02
700	273,0	90,04	176,8	48,14
750	276,2	103,8	195,7	57,36
800	279,2	117,6	213,6	66,57
850	282,0	131,7	230,6	75,73
900	284,8	145,9	246,9	84,79
950	287,4	160,2	262,3	93,73
1000	289,9	174,6	277,1	102,5

- Bucio L., Cascales C., Alonso J.A., Rasines I. // J. Phys.: Condens. Matter. 1996. V. 8. P. 2641–2653.
- Дрокина Т.В., Петраковский Г.А., Великанов Д.А., Молокеев М.С. // ФТТ. 2014. Т. 56. № 6. С. 1088– 1092.
- 7. Штин С.В., Лыкасов А.А. // Изв. вузов. Цв. металлургия. 2013. № 5. С. 12–16.
- Becker U.W., Felsche J. // J. Less-Common Metals. 1987. V. 128. P. 269–280.
- 9. Денисова Л.Т., Изотов А.Д., Каргин Ю.Ф. // ДАН. 2017. Т. 477. № 3. С. 313–315.

- 10. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71–73.
- Shannon R.D. // Acta Crystallogr. 1976. V. A32. P. 751–767.
- 12. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2018. Т. 54. № 2. С. 193–196.
- 13. Leitner J., Chuchvalec P., Sedmidysky D., et al. // Thermochim. Acta. 2003. V. 295. P. 27–46.
- Кумок В.Н. В кн.: Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108–123.

HEAT CAPACITY AND THERMODYNAMIC PROPERTIES OF SmFeGe₂O₇ IN THE RANGE 350–1000 K

L. T. Denisova¹, Corresponding Member of the RAS A. D. Izotov², Y. F. Kargin³, L. A. Irtugo¹, V. V. Beletskiy¹, N. V. Belousova¹, V. M. Denisov¹

 ¹Institute of Nonferrous Metals and Materials Science, Siberian Federal University, Krasnoyarsk, Russian Federation
²Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
³Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russian Federation

Received April 19, 2019

SmFeGe₂O₇ germanate was obtained by solid-state reactions from stoichiometric mixtures of starting oxides with multistage firing within 1273–1473 K. The effect of temperature on the heat capacity of the compound was studied using differential scanning calorimetry. Based on the dependence $C_p = f(T)$, its thermodynamic properties are calculated.

Keywords: germanate samarium-iron, differential scanning calorimetry, solid-state reactions, high-temperature heat capacity, thermodynamic properties.