———— ГЕОФИЗИКА —

УДК 551.510.4

NO_x-ЛИМИТИРУЮЩИЙ РЕЖИМ ФОТОХИМИЧЕСКОЙ ГЕНЕРАЦИИ ОЗОНА В СЛАБО ЗАГРЯЗНЁННОМ КОНВЕКТИВНОМ ПОГРАНИЧНОМ СЛОЕ: НАБЛЮДЕНИЯ НА ВЫСОТНОЙ МАЧТЕ ZOTTO В ЦЕНТРАЛЬНОЙ СИБИРИ В 2007–2015 гг.

К. Б. Моисеенко^{*}, Е. В. Березина, А. В. Васильева, Ю. А. Штабкин, А. И. Скороход, член-корреспондент РАН Н. Ф. Еланский, И. Б. Беликов

Поступило 22.04.2019 г.

По наблюдениям приземных концентраций озона (O₃) и окислов азота (NO, NO₂) на высотной мачте ZOTTO (Zotino Tall Tower Observatory) в Центральной Сибири в 2007–2015 гг. получены оценки скорости фотохимической генерации озона (P_Q) и эффективности производства озона (ЭПО) в расчёте на одну молекулу NO_x (=NO+NO₂) (ΔP) в фотохимически активные дни в условиях развитого конвективного пограничного слоя. Экспериментальные данные хорошо аппроксимируются степенными зависимостями: $P_Q \propto [NO_x]^{-n+1}$, $\Delta P \propto [NO_x]^{-n}$, $n = 0.82\pm0.06$ (коэффициент детерминации $R^2 = 0.66$), соответствующими NO_x-лимитирующему режиму генерации озона в слабо загрязнённой воздушной массе. Среднее за летние месяцы значение $\Delta P \sim 30.0-43.7$ [мол.O₃/мол.NO_x] согласуется с величиной ЭПО 39,8 [мол.O₃/мол.NO_x], полученной из численных экспериментов с глобальной транспортно-химической моделью GEOS-chem. Данные наблюдений свидетельствуют о значимой роли антропогенных эмиссий NO_x в региональном балансе озона и необходимости учёта данного фактора при прогнозировании экологических рисков в регионах Сибири, традиционно относящихся к экологически чистым.

Ключевые слова: приземные концентрации озона и окислов азота, фотохимическая генерация озона, развитый конвективный пограничный слой, высотная мачта ZOTTO.

DOI: https://doi.org/10.31857/S0869-56524876669-673

1. Содержание тропосферного озона (O_3) относится к числу важнейших факторов, определяющих уровень антропогенной загрязнённости воздуха [1] и атмосферный бюджет климатически значимых газовых примесей, включая летучие органические соединения (ЛОС), монооксид углерода (СО) и метан (СН₄) [2, 3]. Фотохимическое время жизни указанных соединений лимитируется скоростью их реакции с гидроксил-радикалом ОН, запускающей процесс окисления СО и углеводородов по радикально-цепному механизму с участием семейства нечётного азота NO_x (=NO+NO₂). Важнейшей реакцией инициирования цепи (зарождения свободных радикалов) является фотолиз O₃ в присутствии водяного пара:

$$O_3 + hv(\lambda > 320 \text{ HM}) \to O(^1\text{D}) + O_2,$$
 (R1a)

$$O(^{1}D) + H_{2}O \rightarrow 2OH.$$
 (R16)

Наработка озона происходит в циклах продолжения цепи в результате фотолиза диоксида азота (NO₂), образующегося в реакциях NO с гидропероксидным

радикалом (HO₂) и органическими перокси-радикалами (RO₂) [4]:

$$RH + OH + O_2 \rightarrow RO_2 + H_2O, \qquad (R2)$$

 $NO + HO_2$ (или RO_2) $\rightarrow NO_2 + OH$ (или RO), (R3)

$$NO_2 + hv + O_2 \rightarrow NO + O_3, \tag{R4}$$

где RH — первичные ЛОС, R — радикал углеводорода. Наличие нелинейных обратных связей в системе O_3 — HO_x — NO_x —ЛОС является одним из важнейших свойств атмосферной фотохимической системы (АФС), делающим актуальными исследования реакции поля тропосферного озона на эмиссии его важнейших предшественников — ЛОС и NO_x [5].

2. Анализ чувствительности поля озона в нижней тропосфере на европейской территории России (ЕТР) и в Сибири к региональным эмиссиям предшественников O_3 был выполнен в [6] на основе численных экспериментов с глобальной транспортнохимической моделью (ТХМ) GEOS-chem [7] с привлечением новейших баз данных по антропогенным и биогенным источникам атмосферного загрязнения. Была продемонстрирована сильная зависимость величины фотохимической наработки озона ($\Delta[O_3]$) в летние месяцы от возраста воздушной массы, уста-

Институт физики атмосферы им. А.М. Обухова

Российской Академии наук, Москва

^{*}E-mail: konst.dvina@gmail.com

навливаемого по отношению NO_x к суммарному реактивному азоту NO_y (= NO_x + продукты окисления). Атмосферный отклик в поле озона на антропогенные эмиссии NO_x составил в среднем $\Delta[O_3] = 10-12 \text{ млрд}^{-1}$, или ~30% от фоновой концентрации O_3 в летние месяцы в средних широтах над континентом (35 млрд⁻¹, рис. 1 из [6]), что свидетельствует о значимой роли антропогенного фактора в региональной фотохимии. Возможность экспериментальной проверки полученных результатов, однако, наталкивается на серьёзные трудности ввиду сильной ограниченности репрезентативных данных по фоновому составу воздуха на территории России.

В данной работе количественный анализ взаимосвязи $O_3 - NO_x$ выполнен с использованием данных наблюдений O_3 , NO и NO₂ на высотной мачте ZOTTO (Zotino Tall Tower Observatory, 60°47' с.ш., 89°21' в.д., 300 м н.у.м.) в Центральной Сибири в 2007–2015 гг. (рис. 1). Мачта расположена на базе Средне-Енисейского стационара Института леса СО РАН в 500 км к северу от Красноярска в таёжной зоне, вдали от крупных населённых пунктов

Рис. 1. Сезонный ход O₃ (максимальные дневные, 10:00–18:00, среднечасовые значения) и NO_x (за часы, соответствующие дневному максимуму O₃), по измерениям на мачте ZOTTO в 2007–2015 гг. Статистики по месяцам: среднее (•), медиана (×), интервал P₀₅– P₉₅ (I), общее количество значений, использованных при расчёте (цифры на верхнем графике).

и промышленных объектов. Направления работ включают круглогодичный мониторинг приземных концентраций CO_2 , CH_4 , CO, NO, NO_2 и O_3 , измерения изотопного состава ($^{13}C/^{12}C/^{14}C$ и др.) основных парниковых газов и оценки потоков углерода в ключевых экосистемах района исследований (www.zottoproject.org). Фоновый характер станции позволяет также проводить количественные оценки вклада дальнего переноса в региональный баланс долгоживущих предшественников озона — CO и CH₄ [9–11].

Согласно [6] антропогенные эмиссии NO_x в регионах Западной и Восточной Сибири являются преобладающими (0,6 Tr N в год) по сравнению с другими приземными источниками — биогенными эмиссиями (0,3 Tr N в год) и горением биомассы (0,1–0,2 Tr N в год). Наличие значимого антропогенного сигнала в данных измерений NO_x на высотной мачте было установлено ранее по результатам расчётов ансамблей обратных траекторий при времени адвекции порядка 1–2 сут [12]. Следуя [2], определим эффективность производства озона (ЭПО) ΔP в расчёте на одну молекулу NO_x как отношение скорости накопления озона P_Q (= $P_{O_3} - L_{O_3}$) к скорости фотохимического стока NO_x (L_N):

$$\Delta P = \frac{P_Q}{L_{\rm N}} = \tau_{\rm N} \frac{P_Q}{[{\rm NO}_x]_e},\tag{1}$$

где $\tau_N = (\partial L_N / \partial [NO_x])^{-1}$ — время жизни NO_x, $[NO_x]_e = E_N \cdot \tau_N$ — концентрация NO_x в предположении фотохимического равновесия между источниками (E_N) и стоками (L_N) NO_x, P_{O_3} и L_{O_3} [мол. c⁻¹] — скорости фотохимического образования и разрушения O₃. В условиях развитого конвективного пограничного слоя (КПС) над горизонтально однородной поверхностью дневное приращение озона ($\Delta[O_3]$) практически полностью обусловлено его фотохимическим производством [2], при этом вкладом процессов переноса и осаждения в первом приближении можно пренебречь, откуда следует

$$\Delta P \cong \frac{\tau_{\rm N}}{[{\rm NO}_x]_e} \frac{\Delta[{\rm O}_3]}{\Delta t},\tag{2}$$

где $\frac{\Delta[O_3]}{\Delta t}$ — средняя за время Δt величина P_Q . Полагая, что в дневных условиях основной сток NO_x происходит преимущественно по тройной реакции (R5) с образованием азотной кислоты [1, 13]:

$$OH + NO_2 + M \rightarrow HNO_3 + M,$$
 (R5)

получим оценку $\tau_N \approx k_7 \cdot [OH] \cdot [M]$, где $k_7 - коэф-фициент реакции, рассчитываемый по [8], [M] —$

ДОКЛАДЫ АКАДЕМИИ НАУК том 487 № 6 2019

концентрация молекул воздуха, [OH] — средняя дневная концентрация гидроксила согласно расчётам по TXM GEOS-chem.

3. Для расчётов ΔP и P_Q использовались средние часовые концентрации O_{3} , NO и NO₂ на высоте 4 м над землёй, полученные на основе исходных одноминутных рядов наблюдений за летние месяцы указанного периода. Для измерения концентрации озона применён газоанализатор типа 1008АН производства компании "Dasibi Inc.", диапазон измерений $1-1000 \text{ млрд}^{-1}$, общая погрешность $\pm 1 \text{ млрд}^{-1}$. Концентрации NO и NO₂ измерялись прибором TE42C-TL производства компании "Thermo Fisher Scientific Inc."; минимальная обнаруживаемая концентрация $0,05 \text{ млрд}^{-1}$. Для устранения влияния локальных источников NO, связанных с объектами инфраструктуры и транспортом, исходные данные были отфильтрованы по критерию $[NO]/[NO_2] < 0.2$. Дополнительно использовались данные по величине суммарного облачного покрытия (N_c , %) и максимальной дневной температуре воздуха (T_m) по наблюдениям на метеостанции Ворогово (~40 км к СВ от ZOTTO) (https://rp5.ru/Архив погоды в Ворогово).

Для получения устойчивых количественных оценок по формуле (2) рассматривалось подмножество \mathbf{P}_{a} фотохимически активных дней (283 дня за все летние месяцы рассматриваемого периода наблюдений), удовлетворяющих критерию $T_{m} > 20$ °C и $N_{c} < 30\%$. Величину фотохимической наработки озона, $\Delta[O_{3}]$, за каждый день рассчитывали как разность между соответствующими максимальными среднечасовыми концентрациями в период с 14:00 до 19:00 часов и в утренние часы с 09:00 до 11:00 местного времени.

4. Данные из **P**_a в целом характеризуются устойчивыми суточными ходами O₃ и NO_x (рис. 2) с максимумами в предвечерние и утренние часы соответственно. Наличие утреннего (07:00) минимума озона обусловлено его подынверсионным стоком на подстилающую поверхность в ночное время, а также вкладом реакции NO + O₃ на фоне роста содержания монооксида азота в воздухе в утренние часы за счёт частичной фотодиссоциации NO₂ и членов семейства NO_{v} (NO₃, HNO₄), выполняющих роль резервуарных соединений в ночное время. Максимум суточного хода О₃ приходится на предвечернее время (17:00), когда скорость наработки озона уравнивается его химическим стоком в реакциях с NO, сухого осаждения и фотодиссоциации. Суточный максимум NO достигается в 10:00, в последующие часы рост концентрации пероксидных радикалов ведёт к пе-

ДОКЛАДЫ АКАДЕМИИ НАУК том 487 № 6 2019

Рис. 2. Суточные ходы O_3 и NO в фотохимически активные дни ($T_m > 20$ °С, $N_c < 30\%$) при $\Delta[O_3] > 12$ млрд⁻¹ (см. обозначения на рис. 1); количество точек для каждого часа от 28 до 33.

рераспределению между членами семейства NO_x в сторону увеличения содержания NO_2 с последующей фотохимической наработкой озона (реакции R3, R4) [2].

Для фотохимически активных дней, удовлетворяющих критерию $\Delta[O_3] > 4,9 \text{ млрд}^{-1}$ (нижний квартиль частотного распределения $\Delta[O_3]$ на P_a), были рассчитаны скорости генерации озона $P_Q = \Delta[O_3] \times (24/\Delta t)$, млрд⁻¹/сут, где $\Delta t = t_2 - t_1$ (ч) — временной интервал, на котором отмечался рост озона, и далее величина ΔP по формуле (2). $[NO_x]_e$ принималось равным концентрации NO_x в момент $t = t_2$ (т.е. за час, в который амплитуда суточного хода O_3 достигала максимума). Результаты расчётов скорости дневной наработки озона в расчёте на одну молекулу NO_x ($P_Q/[NO_x]_e$) и ЭПО (ΔP) за отдельные дни при $\tau_N = 0,48 \text{ сут}^{-1}$ ([OH] = $2 \cdot 10^6 \text{ мол. см}^{-3}$) приведены на рис. 3. Соответствующие уравнения регрессионных кривых имеют вид

$$P_Q = c_1 [NO_x]_e^{-n+1}, \quad \Delta P = c_2 [NO_x]_e^{-n},$$
 (3)

где $n = -0.82 \pm 0.06$; $c_1 = 46.7 \pm 2.8$; $c_2 = 22.6 \pm 1.4$ ($R^2 = 0.66$).

Полученные оценки оказались устойчивыми относительно вариаций исходных параметров: поро-

Рис. 3. Величины $P_Q/[NO_x]_e$ (сплошная линия, $R^2 = 0,66$) и ΔP при $\tau_N = 0,48$ сут⁻¹ (пунктир) в фотохимически активные дни ($T_m > 20$ °C, $N_c < 30\%$) при $\Delta[O_3] > 4,9$ млрд⁻¹.

говых значений T_m и N_c , и выбора алгоритма расчёта величин $\Delta[O_3]$ и $[NO_x]_e$. Так, для подмножества дней, удовлетворяющих критерию $T_m > 15$ °C, $N_c \le 100\%$, соответствующие коэффициенты пропорциональности в формулах (3) составили $46,3\pm1,7$ и $22,4\pm0,8$, а величина показателя составила $-0,80\pm0,04$, т.е. в пределах погрешностей выбранной методики указанные величины остались неизменными при значительно большем разбросе экспериментальных точек ($R^2 = 0,52$). Аналогичным образом в качестве $[NO_x]_e$ можно принять среднюю за Δt концентрацию NO_x .

5. Как было показано в [12], наблюдения повышенных концентраций NO_x (>0,5-1 млрд⁻¹) в ZOTTO связаны с прохождением сильно размытых шлейфов антропогенно загрязнённого воздуха от источников, удалённых от мачты на расстояние свыше 500 км. В соответствии с результатами траекторного анализа при характерном времени адвекции порядка суток воздух в шлейфе на высотах до 850 мбар можно принять равномерно перемешанным по вертикали. Это позволяет с известной осторожностью принять полученные эмпирическим путём оценки ЭПО в приземном слое как характеризующие фотохимическую систему (ФХС) нижней тропосферы в целом. В [6] распределение величины ЭПО над континентом рассчитывалась на основе полей концентраций из модели GEOS-chem как угол наклона соответствующей прямой при регрессии [O₃] на [NO_z] (= [NO_y] – [NO_x]) [14]. Для модельной

ячейки, включающей ZOTTO, было получено: $\langle \Delta[NO_x]/\Delta[NO_z] \rangle = 39,8; \langle [NO_x] \rangle = 0,63 \text{ млрд}^{-1}$, где $\langle \cdot \rangle$ означает среднее за летние месяцы. Для дней с малооблачной погодой диапазон вариаций [OH] составил от 1,5 до 2,2 $\cdot 10^6$ мол. см⁻³. Используя полученные значения $\langle [NO_x] \rangle$ и [OH] в (2), получим $\Delta P = 30,0-43,7$, что хорошо согласуется с приведённой выше оценкой величины $\Delta [O_3]/\Delta [NO_z]$.

Наблюдаемый на рис. 2 разброс экспериментальных точек обусловлен широким диапазоном условий генерации озона в КПС в отдельные дни, зависящих от конкретных метеоусловий и фотохимической предыстории воздушной массы. Однако в целом для приведённого интервала $[NO_r]$ от 0,2 до 5 млрд⁻¹ имеет место устойчивая тенденция к уменьшению величины P_O с ростом [NO_r] в соответствии с общими свойствами атмосферной ФХС. Установленная степенная зависимость в пределах погрешностей экспериментальных данных экстраполируется в область более высоких значений NO_x (см. точки на рис. 2 при $[NO_x] = 7,0$ и 16,8 млрд⁻¹), для которых при фоновой концентрации ЛОС в регионе на уровне 100-150 млрд⁻¹ [15] можно ожидать переходного от NO_x-лимитирующего ($n \to 0+$) к ЛОС-лимитирующему $(n \rightarrow 2)$ режиму генерации озона [5]. Найденная из модельных экспериментов и подтвержлённая экспериментально сильная зависимость скорости фотохимической наработки озона от содержания NO_r в условиях слабо загрязнённого конвективного пограничного слоя над континентом делает актуальной проблему ограничения региональных антропогенных эмиссий NO, как часть общей задачи контроля качества воздуха в регионах Российской Федерации.

Источники финансирования. Работа выполнена при поддержке грантов РФФИ 18–35–20031_мол_а_ вед и 17–29–05102.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Котельников С.Н.* // Тр. Ин-та общей физики РАН. 2015. Т. 71. Р. 10–41.
- Liu S.C., Trainer M., Fehsenfeld F.C., Parrish D.D., Williams E.J., Fahey D.W., Hobler G., Murphy P.C. // J. Geophys. Res. 1987. V. 92. № D4. P. 4191–4207.
- *Ehhalt D.H.* // Phys. Chem. Chem. Phys. 1999. V. 1. № 24. P. 5401–5408.
- Daum P. H., Kleinman L., Imre D.G., Nunnermacker L.J., Lee Y.-N., Springston S.R., Newman L. // J. Geophys. Res. 2000. V. 105. P. 9155–9164.
- Sillman S., He D. // J. Geophys. Res. 2002. V. 107. № D22. P. 4659.
- Моисеенко К.Б., Штабкин Ю.А., Березина Е.В., Скороход А.И. // Изв. РАН. ФАО. 2018. Т. 54. № 6. С. 645–648.

- Bey I., Jacob D.J., Yantosca R.M., Logan J.A., Field B.D., Fiore A.M., Li Q.B., Liu H.G.Y., Mickley L.J., Schultz M.G. // J. Geophys. Res. 2001. V. 106. P. 23073–23095.
- Brown S.S., Talukdar R.K., Ravishankara A.R. // Chem. Phys. Let. 1999. V. 299. P. 277–284.
- Vasileva A.V., Moiseenko K.B., Mayer J.C., Jürgens N., Panov A., Heimann M., Andreae M.O. // J. Geophys. Res. 2011. V. 116. P. D07301.
- Mikhailov E.F., Mironova S., Mironov G., Vlasenko S., Panov A., Chi X., Walter D., Carbone S., Artaxo P., Heimann M., Lavric J.V., Pöschl U., Andreae M.O. // Atmos. Chem. Phys. 2017. V. 17. № 23. P. 14365– 14392.
- 11. Berchet A., Pison I., Chevallier F., Paris J.-D., Bousquet P., Bonne J.-L., Arshinov M.Y., Belan B.D., Cres-

sot C., Davydov D.K., Dlugokencky E.J., Fofonov A.V., Galanin A., Lavric J.V., Machida T., Parker R., Sasakawa M., Spahni R., Stocker B.D., Winderlich J. // Biogeosciences. 2015. V. 12. № 18. P. 5393–5414.

- Вивчар А.В., Моисеенко К.Б., Шумский Р.А., Скороход А.И. // Изв. РАН. ФАО. 2008. Т. 45. № 3. С. 325–336.
- Kleinman L.I., Daum P.H., Lee J.H., Lee Y.-N., Nunnermacker L.J., Springston S.R., Newman L., Weinstein-Lloyd J., Sillman S. // Geophys. Res. Let. 1997. V. 24. P. 2299–2302.
- Trainer M. // J. Geophys. Res. 1993. V. 98. № D2. P. 2917–2925.
- Skorokhod A.I., Berezina E.V., Moiseenko K.B., Elansky N.F., Belikov I.B. // Atmos. Chem. Phys. 2017. V. 17. № 8. P. 5501–5514.

NO_x-LIMITING REGIME OF OZONE GENERATION IN A WEAKLY POLLUTED BOUNDARY LAYER OVER CENTRAL SIBERIA AS DERIVED FROM O₃ AND NO_x OBSERVATIONS AT ZOTTO TALL TOWER OBSERVATORY IN 2007–2015

K. B. Moiseenko, E. V. Berezina, A. V. Vasileva, Yu. A. Shtabkin,

A. I. Skorokhod, Corresponding Member of the RAS N. F. Elanskii, I. B. Belikov

A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences, Moscow, Russian Federation

Received April 22, 2019

Quantitative estimates on the ozone production efficiency (OPE) per a molecular of NO_x (=NO+NO₂), ΔP , and ozone production rate, P_Q , are derived for the region of Central Siberia based on near surface observations of O₃, NO, and NO₂) at Zotino Tall Tower Observatory in 2007–2015. Experimental data follow are a power law dependencies on NO_x abundance: $P_Q \propto [NO_x]^{-n+1}$, $\Delta P \propto [NO_x]^{-n}$, $n = 0.82\pm0.06$ (coefficient of determination $R^2 = 0.66$), with the power law exponent corresponding to a NO_x-limiting regime of ozone production in a weakly polluted air mass. During summer, the value of ΔP ranges from 30.0-43.7 [mol.O₃/mol.NO_x] which agrees well with the corresponding estimate of 39,8 [mol.O₃/mol.NO_x] derived from GEOS-chem CTM model simulations. The derived estimates provide an observation based conclusion on the important role of regional anthropogenic emissions of NO_x in summertime ozone photochemistry in the remote areas of Siberia.

Keywords: surface ozone and nitrogen oxides concentrations, ozone photochemical generation, convective boundary layer, ZOTTO tall tower observatory.