——— ГЕОХИМИЯ —

УДК 550.42

ПРОИСХОЖДЕНИЕ, МЕСТА НАХОЖДЕНИЯ И ПОДВИЖНОСТЬ ИЗОТОПОВ ГЕЛИЯ И АРГОНА В МЕЛИФАНИТЕ

Л. М. Лялина*, И. Л. Каменский, И. Н. Толстихин

Представлено академиком РАН И.В. Чернышевым 14.06.2018 г.

Поступило 18.06.2018 г.

Измеренные содержания U, Th и ⁴He в мелифаните соответствуют возрасту метаморфизма (1800 млн лет), что как будто бы свидетельствует о хорошей сохранности радиогенного ⁴He в минерале, но противоречит опыту U–Th–⁴He-датирования. Для анализа этого результата была определена сохранность ³He, которая оказалась весьма низкой, около 2%. Изотопы ^{3,4}He находятся в радиационных треках, пересечение которых с плоскостями спайности обеспечивает их миграцию из минерала. Поэтому и ⁴He, возникший при распаде U и Th, должен был быть практически полностью потерян. Мелифанит содержит захваченный He, находящийся, вероятно, в специфических объёмах его кристаллической структуры. Опыт по экстракции изотопов He из мелифанита при его нагреве в вакууме подтвердил этот вывод. Применение одной U–Th–⁴He-системы для датирования (как это часто делается в термохронологии) может привести к ошибочным результатам. Для идентификации происхождения гелия в минералах следует использовать оба изотопа, ³He и ⁴He.

Ключевые слова: гелий, аргон, изотопы, происхождение, подвижность, размещение в кристаллической структуре, мелифанит.

DOI: https://doi.org/10.31857/S0869-56524883303-306

В подавляющем большинстве публикаций, посвящённых изотопии гелия, рассматривается вклад мантийного Не в исследуемые образцы (пород, газов, подземных вод). В данной работе показано, что анализ радиогенных изотопов ³Не и ⁴Не так же является полезным. Сопоставление их концентраций, мест нахождения и подвижности позволяет понять их происхождение в минерале, выявить специфические свойства кристаллической решётки вещества, контролирующие миграцию газов и доступные для них объёмы, составить представление о процессах миграции газов в системе минерал–поровый флюид.

Благородные газы (БГ) являются наиболее информативными и широко используемыми трассерами природных флюидов [1]. Как правило, минералы содержат радиогенные, возникшие in situ, и захваченные БГ. Эти два компонента занимают разные места в минерале: радиогенные изотопы пространственно связаны с родительскими радиоактивными элементами, а захваченные газы — с газовожидкими микровключениями, дефектами или особенностями структуры минерала. Различие мест нахождения во многих случаях позволяет выделить эти компоненты, используя разные методы экстракции газов. Захваченные БГ позволяют изучать: 1) процессы, ответственные за их проникновение в минерал [2, 3]; 2) происхождение захваченной минералом флюидной компоненты [4, 5]; 3) некоторые свойства минерала, такие как проницаемость, доступные для газа внутренние объёмы, диффузионные параметры его кристаллической решётки [3, 6].

Радиогенные изотопы используются для определения возраста минерала или времени закрытия изотопной системы в термохронологии [7]. Кроме того, их можно рассматривать как нано-трассеры, миграция которых позволяет понять некоторые свойства вмещающего их материала и его эволюцию [3, 8, 9]. Особенно интересен в этом отношении Не, отличающийся аномально высокой подвижностью в силикатах.

Эти соображения и подходы были впервые использованы для расшифровки происхождения изотопов He и Ar в редком силикате бериллия — мелифаните. В задачи работы входили оценка подвижности изотопов He в мелифаните, определение мест нахождения ³He, ⁴He и ⁴⁰Ar^{*} в минерале и реконструкция миграции БГ в системе минерал-флюид.

Мелифанит Ca₄(Na,Ca)₄Be₄AlSi₇O₂₄(F,O)₄ присутствует в пегматитовом теле нефелин-полевошпатового состава, развитом на контакте щелочных габброидов и нефелиновых сиенитов, а также в окружающих пегматит слюдитах, массив Сахарйок, Кольский полуостров. Мелифанит представлен таблитчатыми кристаллами и порфиробластами (раз-

Геологический институт Кольского научного центра Российской Академии наук, Апатиты Мурманской обл.

^{*}E-mail: lialina@geoksc.apatity.ru

мером до 50 мм), ксеноморфными зёрнами, часто с многочисленными включениями слюды и пироксенов.

В основе структуры мелифанита лежат слои, образованные прочно связанными друг с другом тетраэдрами [SiO₄], [AlO₄] и [Be(O,F)₄]. Эти слои соединяются в трёхмерную кристаллическую постройку менее прочно связанными щелочными и щёлочноземельными катионами натрия и кальция. Тетраэдрические слои характеризуются средними межатомными расстояниями 1,6–1,7 Å, а соединяющие их катионные слои с Na и Ca значительно бо́льшими значениями средних длин связей – до 2.5 Å. В пределах тетраэдрического слоя могут быть выделены пятичленные кольца с ещё бо́льшим диаметром. Таким образом, атомы Не и других БГ размером менее 2 Å могут размещаться как в катионном слое, так и в пределах пятичленных колец тетраэдрических слоев. Слоистый характер структуры мелифанита с менее прочными связями между слоями обусловливают его совершенную спайность.

Уран-свинцовый возраст циркона из нефелиновых сиенитов массива определён в 2610—2680 млн лет; возраст метаморфизма — 1770—1820 млн лет [10].

Использованные методики экстракции и измерения концентраций изотопов Не и Ar из минералов приведены в [3].

Концентрация возникшего in situ ⁴He 4,88 × $\times 10^{-8}$ моль г⁻¹ рассчитанная исходя из содержаний U (1,3 г · т⁻¹), Th (14 г · т⁻¹) и возраста метаморфизма в предположении, что U—Th—⁴He-система оставалась закрытой, близка к измеренному содержанию, 4,5 · 10⁻⁸ моль · г⁻¹. Соответственно, U—Th—⁴He-возраст, 1,66 · 10⁹ лет, оказался близким к возрасту метаморфизма. При дроблении освобождается малая часть содержащегося в минерале ⁴He, около 0,03, а отношения изотопов He, выделенного дроблением или плавлением образца, идентичны, ³He/⁴He = $(1 \pm 0, 2) \cdot 10^{-8}$, и не отличаются от типичного терригенного He земной коры. Эти данные U—Th—⁴He-системы как будто бы свидетельствуют о хорошей сохранности ⁴He в минерале и его пригодности для датирования.

Сравнение измеренных и рассчитанных концентраций ³Не приводит к принципиально другому заключению. Радиогенный ³Не возникает в экзотермической (около 5 Мэв) реакции теплового нейтрона с ядром лёгкого изотопа лития: ⁶Li(n,α)³H $\rightarrow\beta$ - \rightarrow ³He ($\tau_3 = 10,2$ года). Вмещающие мелифанит щелочные породы характеризуются высокими содержаниями U=30415,5 и Th=59,1 г·т⁻¹. Средний рассчитанный нейтронный поток в этих породах достигал 15 ней-

Рис. 1. Выделение изотопов Не из мелифанита при ступенчатом нагреве зёрен и раздробленного образца (пудры) в вакууме. Время экспозиции при каждой температуре 60 мин. Различие в количествах выделившегося Не обусловлено разными навесками минерала, использованными в экспериментах. Выделение ³Не из зёрен и пудры происходит при более низкой температуре, чем ⁴Не. Различие температур выделения "чисто радиогенного" ³Не и захваченного "чисто терригенного" ⁴Не должно быть больше наблюдаемого на рисунке. В минерале также присутствует терригенный ³Не, захваченный вместе с ⁴Не, и радиогенный ⁴Не, небольшая часть которого должна была сохраниться в минерале, что уменьшает разницу температур до установленной в эксперименте.

трон · см⁻² · сутки⁻¹. При таком потоке за 1,8 · 10⁹ лет (возраст метаморфизма) в богатом Li мелифаните (Li = 340 г · т⁻¹) должно было образоваться ³He = = 3,5 · 10⁻¹⁴ моль · г⁻¹, что в 50 раз (!) больше измеренного содержания ³He = 6,5 · 10⁻¹⁶ моль · г⁻¹. Рассчитанное отношение ³He/⁴He \approx 7 · 10⁻⁷ в мелифаните также оказалось в 70 раз выше измеренного. При этом суммарная погрешность расчёта [11] и измерения концентраций ³He [3] близка к ±30%.

Для выяснения причины расхождения между наблюдаемыми и рассчитанными концентрациями ³He и ⁴He было выполнено исследование подвижности изотопов He в минерале методом ступенчатого нагрева в вакууме. Температура выделения ³He из зёрен и из раздробленного минерала заметно ниже, чем ⁴He (рис. 1). Это обстоятельство указывает на различие мест нахождения ³He и ⁴He в мелифаните. Исходя из приведённой выше экзотермической реакции образования ³Не, следует, что ³Не находится в радиационных треках, длина которых близка к 20 мкм. Треки пересекают слои структуры минерала, обеспечивая сток атомов ³Не вдоль плоскостей спайности (время жизни атома Не в открытом треке близко к 1 году [12]) и почти полные потери радиогенного ³He. Но и возникший in situ при α -распаде U и Th радиогенный 4 He также находился в радиационных треках и так же, как ³Не был практически полностью потерян аналогичным образом. Минералы, характеризующиеся слоистой структурой и совершенной спайностью, как правило, почти полностью теряют оба радиогенных изотопа: и ³Не, и ⁴Не [13]. Таким образом, присутствующий в мелифаните ⁴Не, во-первых, является захваченным из окружающей среды (а не образовавшимся in situ), во-вторых, располагается не в треках, а в доступных объёмах кристаллической структуры, в-третьих, близость U-Th-He-возраста к возрасту метаморфизма – случайное совпадение.

Отношения ⁴He /⁴⁰Ar* в мелифаните позволяют осветить процесс захвата гелия. Низкая концентрация К₂О в минерале (0,041 мас.%) и плохая сохранность радиогенного ${}^{40}\text{Ar}^*$ (менее 50%) обеспечили низкую концентрацию этого изотопа. При дроблении выделяется около 50% сохранившегося в минерале ⁴⁰Ar^{*}. Столь высокие потери и подвиж-ность ⁴⁰Ar^{*} обусловлены, по всей видимости, положением атомов К в "слабых" (катионных) слоях структуры мелифанита, где он замещает Na. В температурных фракциях при ступенчатом нагреве зёрен минерала наблюдались аномально высокие отношения ${}^{4}\text{He}/{}^{40}\text{Ar}^{*}$ до ≈ 6000 , при валовом значении 1600. Поскольку ⁴⁰Ar* (по крайней мере, частично) возник in situ в минерале, в захваченных газах отношение 4 Не / 40 Аг * должно быть ещё выше. Эти значения в сотни раз превышают среднее отношение, в котором радиогенные изотопы 4 Не и 40 Аг^{*} генерируются в породах земной коры (≈ 6); в природных флюидах 4 He / 40 Ar^{*} обычно варьируется в пределах от 4 до 20. Различие между наблюдаемыми в мелифаните и типичными для флюидов отношениями ${}^{4}\mathrm{He}/{}^{40}\mathrm{Ar}^{*}$ объясняется преимущественной миграцией Не из порового флюида в минерал по проницаемым для Не (но "закрытым" для Ar) "каналам", как было показано ранее в [3]. Катионные слои и пятичленные кольца тетраэдрических слоёв могут являться доступными для Не объёмами в мелифаните.

В заключение отметим, что анализ U–Th–Li– ⁴He–³He- и K–⁴⁰Ar^{*}-изотопных систем впервые выполненный в редком бериллосиликате – мелифаните, показал:

ДОКЛАДЫ АКАДЕМИИ НАУК том 488 № 3 2019

1. Для идентификации происхождения изотопов Не в минералах следует использовать оба изотопа ³Не и ⁴Не; применение одной U–Th–⁴Не-системы для датирования (как это часто делается в термохронологии) может привести к ошибочным результатам.

2. Обладающий совершенной спайностью мелифанит почти полностью потерял оба радиогенных, возникших in situ изотопа ³He и ⁴He. Захваченный мелифанитом He с отношением изотопов ³He/⁴He = $= 1 \cdot 10^{-8}$, близким к типичному для He земной коры, не имеет отношения к содержащимся в минерале U, Th и Li.

3. Аномально высокое отношение ⁴He/⁴⁰Ar^{*} > > 1600 в мелифаните свидетельствует о том, что гелий мигрировал в уже сформировавшийся минерал по проницаемым только для гелия "каналам" и находится в специфических объёмах кристаллической структуры. Это объясняет весьма малые потери Не при дроблении минерала.

Благодарности. Авторы признательны Е.А. Селивановой и Д.Р. Зозуле за содействие в подготовке этой работы.

Источники финансирования. Работа выполнена при поддержке РФФИ (проекты № 16-05-00427, 16-05-00756).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Burnard P.E.* The Noble Gases as Geochemical Tracers. Heidelberg: Springer, 2013. 391 p.
- Sherlock S., Kelley S.P. Excess Argon Evolution in HP-LT Rocks: a UVLAMP Study of Phengite and K-Free Minerals, NW Turkey // Chem. Geol. 2002. V. 182. P. 619–636.
- Tolstikhin I., Waber H.N., Kamensky I., Loosli H.H., Skiba V., Gannibal M. Production, Redistribution and Loss of Helium and Argon Isotopes in a Thick Sedimentary Aquitard-Aquifer System (Molasse Basin, Switzerland) // Chem. Geol. 2011. V. 286. P. 48–58.
- Graham D.W. Noble Gas Isotope Geochemistry of Mid-Ocean Ridges and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. In: Noble Gases in Geochemistry and Cosmochemistry. Wash.: Mineral. Soc. Amer., 2002. P. 247–318.
- Каменский И.Л., Скиба В.И. Определение генезиса декрепитирующих и недекрепитирующих микровключений в минералах горных пород путем изучения изотопов гелия и аргона // Геохимия. 2011. № 1. С. 50–58.
- Baxter E.F. Diffusion of Noble Gases in Minerals // Rev. Miner. Geochem. 2010. V. 72. P. 509–557.
- McDougall I., Harrison T.M. Geochronology and Thermochronology by the ⁴⁰Ar/³⁹Ar Method. 2-nd ed. Oxford: Oxford Univ. Press, 1999. 212 p.

- Trull T.W., Kurz M.D. Experimental Measurements of ³He and ⁴He Mobility in Olivine and Clinopyroxene at Magmatic Temperatures // Geochim. Cosmochim. Acta. 1993. V. 57. P. 1313–1324.
- Tolstikhin I., Kamensky I., Tarakanov S., Kramers J., Pekala M., Skiba V., Gannibal M., Novikov D. Noble Gas Isotope Sites and Mobility in Mafic Rocks and Olivine // Geochim. Cosmochim. Acta. 2010. V. 74. P. 1436–1447.
- Ветрин В.Р., Скублов С.Г., Балашов Ю.А., Лялина Л.М., Родионов Н.В. Время образования и генезис иттрий-циркониевого оруденения массива Сахарйок, Кольский полуостров // Записки РМО. 2014. № 2. С. 1–22.
- Горшков Г.В., Зябкин В.А., Лятковская Н.М., Цветков О.С. Естественный нейтронный фон атмосферы и земной коры. М.: Атомиздат, 1966. 410 с.
- Tolstikhin I.N., Lehmann B.E., Loosli H.H., Kamensky I.L., Nivin V.A., Orlov S.P., Ploschansky L.M., Tokarev I.V., Gannibal M.A. Radiogenic Helium Isotope Fractionation: The Role of Tritium as ³He Precursor: Geochemical Applications // Geochim. Cosmochim. Acta. 1999. V. 63. P. 1605–1611.
- Герлинг Е.К., Толстихин И.Н., Друбецкой Е.Р., Левковский Р.З., Шарков Е.В., Козаков Л.К. Изотопы гелия и аргона в породообразующих минералах // Геохимия. 1976. № 11. С. 1603–1611.

ORIGIN, SITES AND MOBILITY OF HELIUM AND ARGON ISOTOPES IN MELIPHANITE

L. M. Lyalina, I. L. Kamensky, I. N. Tolstikhin

Geological Institute, Kola Science Centre, Russian Academy of Sciences, Apatity, Murmansk region, Russian Federation

Presented by Academician of the RAS I.V. Chernyshev June 14, 2018

Presented June 18, 2018

The similarity of U-Th-⁴He age of meliphanite and the age of regional metamorphism (1800 Ma) seems to indicate a good retention of radiogenic ⁴He in the mineral, but contradicts with the experience of U-Th-⁴He dating. To analyze this result ³He concentration was measured, which appeared to be very low, about 2 % of the totally produced ³He. Radiogenic ^{3,4}He isotopes occupier radiation tracks. Intersections of these tracks with cleavage planes provide migration of He atoms from the mineral and ⁴He, produced due to U and Th decay, should be almost completely lost. Instead, meliphanite contains trapped He occurring in specific cavities of the crystalline structure. Extraction of He isotopes from meliphanite by its step-wise heating in vacuum confirmed this conclusion. Using U-Th-⁴He system for dating (as it is often done in thermochronology) can lead to incorrect results. Both isotopes, ³He and ⁴He, should be used to identify the origin of helium in minerals.

Keywords: helium, argon, isotopes, origin, mobility, localities in crystal structure, meliphanite.