БИОХИМИЯ, БИОФИЗИКА, МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

УДК 581.1

ЭКСПРЕССИЯ АТФАЗ Р-ТИПА МОРСКОЙ ЗЕЛЁНОЙ МИКРОВОДОРОСЛИ Dunaliella maritima В УСЛОВИЯХ ГИПЕРОСМОТИЧЕСКОГО СОЛЕВОГО ШОКА

Д. Е. Храмов, Д. А. Маталин, И. В. Карпычев, Ю. В. Балнокин, Л. Г. Попова*

Представлено академиком РАН В.П. Скулачевым 13.03.2019 г.

Поступило 13.03.2019 г.

Из морской микроводоросли *Dunaliella maritima* клонировали частичные последовательности ATФаз Р-типа: двух, предположительно, H⁺-ATФаз (*Dm*HA1 и *Dm*HA2) и двух Ca²⁺-ATФаз (*Dm*CA1 и *Dm*CA2). О вероятной функции клонированных белков судили по сходству их первичной структуры со структурами белков, функции которых хорошо охарактеризованы. Методом количественной OT-ПЦР исследовали изменения экспрессии генов клонированных ATФаз *D. maritima* в ответ на резкое повышение концентрации NaCl в среде культивирования (от 100 до 500 мМ). Гиперосмотический солевой шок приводил к существенному увеличению экспрессии *Dm*HA2 и незначительному росту экспрессии *Dm*CA2, тогда как экспрессия двух других ATФаз, *Dm*HA1 и *Dm*CA1, была подавлена. Полученные данные указывают на то, что ATФаза *Dm*HA2 вовлечена в ионное гомеостатирование клеток *D. maritima* в условиях гиперосмотического солевого шока.

Ключевые слова: АТФазы Р-типа, ионное гомеостатирование, клонирование, морские микроводоросли, *Dunaliella maritima*.

DOI: https://doi.org/10.31857/S0869-56524884446-451

Живые клетки, как прокариоты, так и эукариоты, поддерживают низкие концентрации Na⁺ в цитоплазме. Локализованные в клеточных мембранах Na⁺-транспортирующие белки экспортируют ионы Na⁺ из цитоплазмы с затратой метаболической энергии. В животных клетках эту функцию выполняет Na,K-АТФаза плазматической мембраны (ПМ), а в клетках высших растений – Na⁺/H⁺-антипортеры ПМ и тонопласта, использующие для экспорта Na⁺ энергию протонного градиента [1]. Последний создается на ПМ растительной клетки Н⁺-АТФазой Р-типа (на тонопласте – Н⁺-АТФазой V-типа, а также H⁺-транслоцирующей пирофосфатазой) [1]. Как Na,К-АТФаза животных клеток, так и Н⁺-АТФаза плазмалеммы растительных клеток относятся к семейству АТФаз Р-типа, образующих в каталитическом цикле фосфорилированный интермедиат. АТФазы Р-типа характерны для ПМ эукариотических клеток и переносят через мембрану малые катионы (N a^+ , K $^+$, C a^{2+} , H $^+$), ионы тяжелых металлов и фосфолипиды [2].

У эволюционных предшественников высших растений — зелёных галотолерантных микроводорослей, обитающих в солёных средах, внутриклеточные концентрации Na⁺ также поддерживаются на существенно более низком уровне, чем в наружной среде [3]. Показано, что у этих организмов в плазматической мембране функционирует Na⁺транспортирующая АТФаза Р-типа [4], которая, как предполагается, и отвечает за экспорт Na⁺ из цитоплазмы в наружную среду. Подобный фермент у высших растений не обнаружен.

Галотолерантная микроводоросль Dunaliella maritima относится к большому семейству одноклеточных зелёных водорослей Dunaliellaceae, которые в большинстве своем обитают в средах с высокими концентрациями NaCl и используются как модельные объекты в исследованиях механизмов Na⁺-гомеостатирования клеток растений, в частности в исследованиях механизмов транспорта Na⁺ [5]. Особенностью клеток микроводорослей рода Dunaliella является отсутствие крупной центральной вакуоли, и поэтому основные механизмы ионного гомеостатирования у этих водорослей расположены в ПМ. У представителя этого рода, D. maritima, в экспериментах на выделенных везикулах ПМ обнаружена Na⁺-транспортирующая АТФаза Р-типа [6].

С целью идентификации гена Na⁺-АТФазы у *Dunaliella* мы провели поиск in silico возможных последовательностей АТФаз Р-типа в собранном нами de novo транскриптоме родственной микроводоросли *D. tertiolecta* [7]. Массивы коротких прочтений РНК для сборки транскриптома *D. tertiolecta* были взяты в информационной базе Sequence Read Archive, NCBI.

Наличие Na⁺-ATФаз у морских микроводорослей не вызывает в настоящее время сомнений [4], однако вопреки ожиданиям в транскриптоме D. tertiolecta

Институт физиологии растений им. К.А. Тимирязева Российской Академии наук, Москва

^{*} E-mail: lora_gp@mail.ru

Последовательность	Праймеры для амплификации фрагментов кодирующих последовательностей АТФаз (5'-3')	
DmHA1	F	CCCGTGCAGATTGACCAAGC
	R	TCGCCAGCATCTCCCACT
DmHA2	F	AGCCCAGACCTGCACGAA
	R	CCACACGAGCAGACATTCGGAT
DmCA1	F	GCTGTTATCACCACCTGCCT
	R	TTGTTGTCGCCAGTGATGACCA
DmCA2	F	GCCACACCCCTGTCACCT
	R	AGCTTGAGCACCTCGTCCA
Праймеры для регистрации относительного количества транскриптов АТФаз (5'-3')		
β-тубулин	F	CAGATGTGGGATGCCAAGAACAT
	R	GTTCAGCATCTGCTCATCCACCT
DmHA1	F	TCAGCACGCGGAACACCCT
	R	GCGCCCTGTCTGCCAACACA
DmHA2	F	AGGATGATGTGCTGCTTTACTCC
	R	GTGATCAGCTTCTCGCCAGT
DmCA1	F	CATCAAGTATGGCAGAAACCAG
	R	TTGCCACCAAAATCAACAGG
DmCA2	F	GCCACACCCCTGTCACCT
	R	CCGGTCGTAAAGTAGTCACA

Таблица 1. Список праймеров, использованных в работе

не было обнаружено последовательности, которую можно было бы однозначно отнести к группе Na⁺-АТФаз. Однако в транскриптоме *D. tertiolecta* были обнаружены наряду с различными АТФазами Р-типа транскрипты двух разных H^+ -АТФаз и двух Ca^{2+} -АТФаз. О предполагаемой функции этих белков судили по сходству их первичной структуры со структурами белков, функции которых хорошо охарактеризованы. Сходство как нуклеотидных, так и аминокислотных последовательностей двух Н⁺-АТФаз D. tertiolecta между собой оказалось относительно невелико (около 40% идентичных нуклеотидов в кодирующей последовательности и около 40% идентичных аминокислотных остатков), что не позволяет рассматривать эти АТФазы как изоформы одного фермента. Функционирование двух различных протонных помп в плазмалемме микроводоросли D. tertiolecta маловероятно, поэтому мы предположили, что из двух предсказанных Н⁺-АТФаз один фермент переносит протоны, тогда как другой – ионы Na⁺. Также в качестве кандидата на роль Na⁺-АТФазы у *Dunaliella* можно рассматривать один из ферментов, которые были идентифицированы in silico как Ca²⁺-АТФазы [7]. Последнее предположение основано на близком сходстве структур Na⁺- и Са²⁺-АТФаз [8]. Данная работа была предпринята с целью проверки выдвинутой гипотезы.

Объектом настоящего исследования была морская микроводоросль *Dunaliella maritima* Massjuk. Водоросль культивировали в среде, содержащей 0,46 М

NaCl, как описано ранее [9]. Суммарную РНК выделяли методом, описанным в работе [10]. Первую цепь кДНК получали на матрице суммарной РНК с помощью набора MMLV RT kit ("Евроген", Россия). На матрице, полученной кДНК с помощью набора Encyclo Plus PCR kit ("Евроген", Россия) и с использованием ген-специфичных праймеров (табл. 1) амплифицировали частичные последовательности двух, предположительно, протонных и двух Ca²⁺-ATФаз (обозначены нами как DmHA1, DmHA2, DmCA1, DmCA2). Подбор ген-специфичных праймеров осуществляли на основе последовательностей, кодирующих H^+ - и Ca^{2+} -АТФазы, идентифицированных in silico в собранном нами de novo транскр0.иптоме микроводоросли D. tertiolecta [7]. Амплифицированные фрагменты ДНК при помощи набора Quick-TA kit ("Евроген", Россия) клонировали в вектор pAL2-Т и размножали в клетках E. coli.

447

Клонированные частичные последовательности АТФаз *D. maritima* были секвенированы ("Евроген", Россия) и аннотированы (приведены идентификаторы в GenBank): *Dm*HA1 – AQM50089.1, *Dm*HA2 (полноразмерная последовательность) – AQM50087.1, *Dm*CA1 – AQM50088.1, *Dm*CA2 – MK510927. Сравнение (сервис BLAST/NCBI) клонированных последовательностей с идентифицированными in silico последовательностями соответствующих АТФаз микроводоросли *D. tertiolecta* (собственные неопубликованные данные) показало практически полную идентичность соответствующих

Рис. 1. Кладограмма Ca²⁺-, Na⁺- и H⁺-АТФаз Р-типа. **SERCA** – Ca²⁺-АТФазы сарко/эндоплазматического ретикулума; **ENA** – Na⁺-АТФазы дрожжевого типа; **PMHA** – H⁺-АТФазы плазматических мембран; **PMCA** – Ca²⁺-АТФазы плазматических мембран; **PMNA/NaK** – Na⁺-АТФазы, схожие с Na,K-АТФазой животных клеток. Организмы: Aly – Arabidopsis lyrata, Ath – Arabidopsis thaliana, Csu – Coccomyxa subellipsoidea, Cva – Chlorella variabilis, Dac – Dunaliella acidophila, Dbi – Dunaliella bioculata, Dme – Drosophila melanogaster, Dsa – Dunaliella salina, Ehu – Emiliania huxleyi, Ene – Eimeria necatrix, Hsa – Homo sapiens, Osa – Oryza sativa, Ota – Ostreococcus tauri, Par – Panulirus argus, Ppa – Physcomitrella patens, Pye – Pyropia yezoensis, Rsy – Runa sylvatica, Sce – Saccharomyces cerevisiae, Tcr – Trypanosoma cruzi, Tvi – Tetraselmis viridis.

АТФаз двух родственных видов водорослей. Клонированные частичные последовательности АТФаз из *D. maritima* продемонстрировали также высокую степень сходства с АТФазами из других видов *Dunaliella*. Так, *Dm*HA1 оказалась практически идентична H⁺-АТФазе из *D. bioculata* (P54211.1 UniProtKB/SwissProt, 99% идентичных аминокислотных остатков (а.о.)) и показала высокую степень сходства с H⁺-АТФазой из ацидофильной водоросли *D. acidophila* (P54210.1 UniProtKB/SwissProt, 82% идентичных а.о.). В свою очередь, *Dm*HA2 оказалась практически идентична АТФазе из экстремально галотолерантной водоросли *D. salina* (ABB88698.1, 99% идентичных а.о.), тогда как её сходство с H⁺-АТФазами из *D. bioculata* (P54211.1) и *D. acidophila* (P54210.1) оказалось относительно невелико (менее 40% идентичных а.о.). Последовательность *Dm*CA1 обнаружила высокую степень идентичности (99%) с катион-транспортирующей АТФазой из *D. bioculata* (P54209.1 UniProtKB). Последовательность *Dm*CA2 оказалась сходной (до 70% идентичных а.о.) с Ca²⁺-АТФазами эндоплазматического ретикулума из различных видов водорослей и высших растений. На рис. 1 представлена кладограмма различных H⁺-АТФаз, Ca²⁺-АТФаз и Na⁺-АТФаз,

Рис. 2. Относительное содержание транскриптов АТФаз *Dm*HA1, *Dm*HA2, *Dm*CA1 и *Dm*CA2 в клетках водоросли *D. maritima* на разных стадиях ответной реакции на гиперосмотический солевой шок. Варианты: a - DmHA2, $\delta - Dm$ HA1, e - DmCA1, e - DmCA2. В нулевой момент времени концентрация NaCl в среде роста водорослей увеличена с 100 до 500 мМ. Контрольные варианты: K1 – образцы из культуры водоросли, растущей в среде, содержащей 0,1 M NaCl; K2 – образцы из культуры водоросли, растущей в среде, содержащей 0,5 M NaCl. Для каждого образца реакцию проводили в трёх аналитических повторностях. Приведены усредненные данные из трёх независимых экспериментов. В качестве погрешностей указаны стандартные отклонения.

демонстрирующая родство клонированных АТФаз *D. maritima* с АТФазами Р-типа из других организмов.

Чтобы выявить кандидата на роль Na⁺-транспортирующей АТФазы у водорослей Dunaliella, мы исследовали экспрессию генов клонированных АТФаз D. maritima в условиях гиперосмотического солевого шока. В данной серии экспериментов была использована культура водоросли, акклимированная к относительно низким концентрациям соли (0,1 М NaCl) в среде. Гиперосмотический солевой шок для клеток создавали, добавляя в суспензию водорослей NaCl до конечной концентрации 0,5 М. Аликвоты клеточной суспензии (200 мл) отбирали через определенные промежутки времени после добавления NaCl и из клеток выделяли суммарную РНК. Уровень экспрессии генов определяли методом количественной ПЦР в реальном времени (кОТ-ПЦР). Используемые праймеры (табл. 1) были комплементарны участкам, лежащим внутри секвенированных фрагментов АТФаз DmHA1, DmHA2, DmCA1, *Dm*СА2. В качестве референсного гена был использован ген β-тубулина Dunaliella, последовательности

ДОКЛАДЫ АКАДЕМИИ НАУК том 488 № 4 2019

праймеров для которого были взяты из работы [11]. Полученные данные обрабатывали при помощи программного обеспечения к амплификатору АНК-32. Для анализа данных использовали пороговый метод, относительный уровень представленности транскриптов определяли по формуле $R = 2^{\Delta Ct}$.

В ходе ответной реакции клеток водоросли на гиперосмотический солевой шок происходила значительная индукция гена АТФазы *Dm*HA2 и уровень представленности транскриптов этого фермента был выше, чем для других исследуемых АТФаз. Наблюдалось также некоторое увеличение экспрессии гена *DmCA2*, тогда как экспрессия генов двух других $AT\Phi_{a3} - DmHA1, DmCA1 - снижалась и оставалась$ на относительно низком уровне (рис. 2). Максимум экспрессии гена DmHA2 приходился на время 90 мин после внесения NaCl в клеточную суспензию. Далее уровень транскриптов *DmHA2* постепенно снижался и через 3 ч возвращался к приблизительно исходным значениям. Динамика экспрессии гена DmHA2 соответствовала динамике внутриклеточных концентраций Na⁺ у D. maritima в аналогичных условиях гиперосмотического солевого шока [12]. Согласно данным последней работы, возросшее в результате гиперосмотического солевого шока содержание Na^+ в клетках *D. maritima* возвращалось к исходному дошоковому уровню к 90-й минуте после резкого увеличения концентрации соли в среде, что по времени совпадает с максимумом экспрессии *DmHA2* (рис. 2).

Полученные результаты позволяют предложить кандидата на роль Na⁺-транспортирующей АТФазы микроводоросли *D. maritima*, а именно АТФазу DmHA2. Значительная индукция DmHA2 при повышении концентрации NaCl в среде показывает, что кодируемый этим геном белок необходим для преодоления клетками гиперосмотического солевого стресса. Белок DmHA2 является ион-транспортирующей АТФазой Р-типа и, по-видимому, несмотря на сходство с протонными АТФазами (рис. 1), может принимать непосредственное участие в транспорте ионов Na⁺, т.е. является Na⁺-транспортирующей АТФазой. Следует отметить в связи с этим, что у морских микроводорослей существуют термодинамические ограничения на экспорт Na⁺ из клеток посредством Na⁺/H⁺-антипортера – экспорта, который зависит от протонного градиента на мембране и создается H^+ -АТФазой [13]. Кроме того, известно, что при гиперосмотическом солевом шоке у галотолерантных микроводорослей происходит защелачивание цитоплазмы, являющееся, по-видимому, следствием поступления Na⁺ в клетки через Na⁺/H⁺антипортер [14], а активность Н⁺-АТФазы при щелочных рН минимальна. Оба эти обстоятельства свидетельствуют против индукции у D. maritima в этих условиях Н⁺-АТФазы, выводящей протоны из клеток. Соответственно, при повышении концентрации NaCl в среде снижался уровень экспрессии АТФазы DmHA1 (рис. 2), которая в большей степени, чем DmHA2, сходна с H⁺-АТФазами высших растений (рис. 1) и с большей вероятностью является ферментом, переносящим через мембрану протон.

Гипотеза о функционировании *Dm*HA2 как Na⁺-АТФазы подкрепляется экспериментальными данными, показывающими, что замена двух-трёх аминокислот или даже одной аминокислоты в аминокислотной последовательности ион-транспортирующей АТФазы является достаточной для изменения ионной специфичности фермента [15]. Очевидно, однако, что требуются дальнейшие эксперименты для подтверждения функционирования белка *Dm*HA2 как Na⁺-транспортирующей АТФазы.

Источник финансирования. Работа выполнена при поддержке Российскогофонда фундаментальных исследований, грант № 16–04–01544.

СПИСОК ЛИТЕРАТУРЫ

- Bassil E., Coku A., Blumwald E. // J. Exp. Bot. 2012.
 V. 63. P. 5727–5740
- 2. *Scarborough G.A.* // Curr. Opin. Cell Biol. 1999. V. 11. P. 517 – 522.
- Балнокин Ю.В. // Ионный гомеостаз и солеустойчивость растений. 70-е Тимирязевское чтение. М.: Наука. 2012.100 с.
- 4. Попова Л.Г., Балнокин Ю.В. // Физиология растений. 2013. Т. 60. С. 499–511.
- 5. Oren A. // Saline systems. 2005. V. 1. P. 1-14.
- 6. Popova L.G., Shumkova G.A., Andreev I.M., Balnokin Y.V. // FEBS Letters. 2005. V. 579. P. 5002–5006.
- Попова Л.Г., Беляев Д.В., Шувалов А.В., Юрченко А.А., Маталин Д.А., Храмов Д.Е., Орлова Ю.В., Балнокин Ю.В. // Молек. биол. 2018. V. 52. Р. 601–615.
- Barrero-Gil J., Garciadeblas B., Benito B. // J. Bioenerg. Biomembr. 2005. V. 37. P. 269-278.
- 9. Balnokin Y.V., Popova L., Myasoedov N.A. // Plant Physiol. Biochem. 1993. V. 31. C. 159–168.
- De Vries S., Hoge H., Bisseling T. // Plant Molecular Biology Manual. Eds. S.B. Gelvin, R.A. Schilperoort, D.P.S. Verma Dordrecht. The Netherlands: 1988. Kluwer Acad. Publ. P. 1–13.
- Lin H., Fang L., Low C.S., Chow Y., Lee Y.K. // FEBS J. 2013. V. 280. P. 1064–1072.
- 12. Захожий И.Г., Маталин Д.А., Попова Л.Г., Балнокин Ю.В. // Физиол. растений. 2012. Т. 59. С. 48–56.
- 13. Balnokin Y.V., Popova L.G., Gimmler H. // J. Plant Physiol. 1997. V. 150. P. 264–270.
- Katz A., Bental V., Degani H., Avron M. // Plant Physiol. 1991. V. 96. P. 110 – 115.
- Kaim G., Dimroth P. // Eur. J. Biochem. 1994. V. 222. P. 615–623.

EXPRESSION OF P-TYPE ATPASES OF MARINE GREEN MICROALGA DUNALIELLA MARITIMA UNDER HYPEROSMOTIC SALT SHOCK

D. E. Khramov, D. A. Matalin, I. V. Karpichev, Y. V. Balnokin, L. G. Popova

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Presented by Academician of the RAS V.P. Skulachev March 3, 2019

Received March 3, 2019

Partial sequences of P-type ATPases were cloned from the marine microalgae *Dunaliella maritima*: two presumably H^+ -ATPases (*Dm*HA1 and *Dm*HA2) and two putative Ca²⁺-ATPases (*Dm*CA1 and *Dm*CA2). The functions of cloned proteins were estimated on the bases of their primary structure similarity with the proteins whose functions have been already characterized. The transcriptional response of cloned ATPase genes to a sharp increase in the NaCl concentration in the culture medium (from 100 to 500 mM) was investigated by quantitative RT-PCR. Hyperosmotic salt shock led to a significant increase in *Dm*HA2 expression and to a slight increase in *Dm*CA2 expression, while the expression of two other ATPases, *Dm*HA1 and *Dm*CA1, was repressed. The obtained data indicate that *Dm*HA2 is involved in maintenance of ion homeostasis in *D. maritima* cells under hyperosmotic salt shock.

Keywords: P-type ATPases, ion homeostasis, ATPase cloning, marine microalgae, Dunaliella maritima.