——— химия =

УДК 547.814+539.261

ОДНОРЕАКТОРНЫЙ СИНТЕЗ И ИССЛЕДОВАНИЕ СТРУКТУРЫ НОВОГО ИНДОЛИНОВОГО СПИРОПИРАНА С КАТИОННЫМ ЗАМЕСТИТЕЛЕМ А. Д. Путачев^{1,*}, А. С. Козленко¹, М. Б. Лукьянова¹, Б. С. Лукьянов^{1,3}, В. В. Ткачев^{2,5},

Г. В. Шилов², О. П. Демидов⁴, академик РАН В. И. Минкин¹, академик РАН С. М. Алдошин²

Поступило 25.07.2019 г.

Описан однореакторный синтез и исследование структуры нового солевого спиропирана индолинового ряда, содержащего в качестве заместителя в положении 8'2H-хроменовой части винил-3H-индолиевый фрагмент. Структура подтверждена данными спектроскопии ЯМР¹H- и ¹³C-, ИК- и масс-спектроскопии высокого разрешения. Монокристаллы соединения исследованы методом рентгеноструктурного анализа. Проведено сравнение структуры с известным изоструктурным аналогом.

Ключевые слова: спиропираны, гетероциклы, ЯМР-спектроскопия, рентгеноструктурный анализ, монокристалл, органический синтез, однореакторный синтез.

DOI: https://doi.org/10.31857/S0869-56524885498-503

Среди широкого спектра органических фотохромных соединений спиропираны представляют собой один из наиболее перспективных и интенсивно изучаемых классов из-за их высокой фоточувствительности, структурных трансформаций и относительно лёгкой возможности модификации структуры [1–3].

Для применения в области медицины предъявляют некоторые требования к фотохромным молекулам, и одним из наиболее важных является возможность функционирования в "биологическом окне" (650—1450 нм), поскольку биологические жидкости и ткани обладают наибольшей прозрачностью в данном диапазоне длин волн [4, 5]. В связи с этим синтез новых спиропиранов, поглощающих в диапазоне длин волн 650—1000 нм, является актуальным направлением научных исследований. Солевые спиропираны также перспективны для создания молекулярных фотомагнетиков при введении в кристаллическую структуру комплексного магнитного аниона [6].

Как правило, отличным от нуля поглощением в области 650—1000 нм характеризуются спиропираны на основе тиа- и селенапиранов, а также бензоселеназола [7], получение которых сопряжено со значительными синтетическими трудностями. Ранее нами было показано, что солевые спиропираны индолинового ряда с винил-3Н-индолиевым заместителем в 2H-хроменовой части также характеризуются длинноволновым (более 700 нм) максимумом поглощения открытой формы [8, 9]. Причём синтез последних экономически выгоднее, безопаснее и значительно проще в реализации.

В настоящей работе описываются синтез и структурные характеристики нового солевого спиропирана, содержащего атомы хлора в положении 5 гетареновой части и в положении 5" катионного фрагмента молекулы.

Синтез 1,3,3,6'-тетраметил-5-хлор-8'[(Е)-2-(1",3",3"-триметил-5"-хлор-3Н-индолий-2"-ил) винил]-спиро[индолин-2,2'-2Н-хромен] перхлората (3) был осуществлен путем однореакторного синтеза (схема 1).

Получить и выделить в достаточных количествах дихлорзамещённый солевой спиропиран (3) путём конденсации по формильной группе спиропирана (4) и перхлората 1,2,3,3-тетраметил-5-хлор-3H-индолия (1) не удалось (схема 2). Вероятно, это связано с тем, что формильная группа спиропирана (4) имеет меньшую реакционную способность, чем в 2-гидрокси-3-формил-5-метилбензальдегиде (2).

Строение полученных соединений (3) было доказано данными элементного анализа, ИК-, ЯМР¹Н- и ¹³С-, а также масс-спектроскопии. Молекулярная структура уточнена методом рентгеноструктурного анализа (РСА).

¹Научно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону

²Институт проблем химической физики Российской Академии наук, Черноголовка Московской обл.

³Донской государственный технический университет, Ростов-на-Дону

⁴Северо-Кавказский федеральный университет, Ставрополь ⁵Институт физиологически активных веществ Российской Академии наук, Черноголовка Московской обл.

^{*}*E-mail: lab811@ipoc.sfedu.ru*

Схема 1

Рис. 1. Корреляционный спектр ЯМР COSY ¹H-¹H соединения (3). Область ароматических протонов.

В ИК-спектрах спиропирана (3) присутствуют характерные полосы поглощения, соответствующие валентным колебаниям связей C=C: 1597 см⁻¹, C–N: 1300 и 1251 см⁻¹, Cl=O перхлорат-аниона: 1099 см⁻¹, $C_{спиро}$ –O: 922 см⁻¹, а также C–Cl: 736 см⁻¹.

В спектре ЯМР¹Н соединения (3) гем-диметильные группы катионного фрагмента проявляются в виде шестипротонного синглетного сигнала при 1,37 м.д. У гем-диметильных групп гетареновой части магнитная неэквивалентность более ярко выражена, потому они проявляются двумя трёхпротонными

синглетными сигналами (1,17 и 1,23 м.д.). Характерные сигналы протона в положениях 3' и 4' наблюдаются при 5,97 и 7,12 м.д. в виде дублетных сигналов с константой спин-спинового взаимодействия 10,3 Гц, что свидетельствует о *цис*-конфигурации винильного фрагмента $C_{3'}=C_{4'}$. Трёхпротонный синглетный сигнал N–CH-группы проявляется при 2,68 м.д., а N⁺–CH₃-группы – при 3,71 м.д.

Для более корректного соотнесения сигналов были проведены дополнительные исследования методом двумерной ЯМР-спектроскопии COSY ¹H–¹H,

ДОКЛАДЫ АКАДЕМИИ НАУК том 488 № 5 2019

Схема 2

Рис. 2. Молекулярная структура соединения (3) по данным РСА.

что позволило определить положения всех ароматических протонов (рис. 1). Протоны винильного фрагмента катионного заместителя проявились как дублетные сигналы при 7,40 и 8,02 м.д. с константами спин-спинового взаимодействия 16,5 Гц, что говорит о *транс*-конфигурации. Интересно, что присутствие атома хлора в положениях 5 и 5" вызвало расщепление сигналов близлежащих атомов водорода. На спектре ЯМР¹³С присутствуют сигналы всех атомов углерода.

На рис. 2 представлена структура синтезированного солевого спиропирана (3) по данным РСА. Атомы N(1), C(3)–C(9) лежат в одной плоскости с отклонением не более 0,15 Å, составляя угол 31,05° с плоскостью атомов N(1), C(3) и C(2'2), сумма углов

C1

По сравнению с молекулярной структурой исследованного ранее 1,3,3,6'-тетраметил-8'[(Е)-2-(1",3",3"-триметил-3Н-индолий-2"-ил)винил]спиро[индолин-2,2'-2Н-хромен] перхлората [10] (5), схема 3, в структуре (3) водородная связь реализуется не между атомами O(1') и H(13') (длина связи для (5) равна 2,205 Å), а между атомами O(1') и H(12') с длиной связи 2,314 Å.

рицательный - на перхлорат-анионе.

Это обстоятельство определяет тот факт, что 3Hиндолиевый фрагмент развёрнут к гетареновой части *гем*-диметильными группами при атоме C(3"), а не метильной группой при атоме азота C(10"), как в молекуле (5).

В таблице 1 приведены значения основных длин и углов связей соединений (3) и (5). Из полученных

Рис. 3. Упаковка молекул (3) в кристалле.

данных видно, что атомы хлора в положениях 5 и 5" оказали небольшое влияние на структуру близлежащих фрагментов молекулы.

В кристаллах этих соединений реализуется укладка молекул по типу паркета (рис. 3). Также в кристаллической решётке присутствуют молекулы этанола. Молекулы в кристалле связаны электростатическим взаимодействием между противоионами, а также 30 межмолекулярными укороченными контактами.

Таким образом, путём однореакторного синтеза был получен и исследован новый солевой спиропиран индолинового ряда, позиционируемый для применения в области медицины, а также создания молекулярных фотомагнетиков. Проведено сравнение его структуры с известным ранее аналогом (5) без атомов хлора в положениях 5 и 5".

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР регистрировали на спектрометре Bruker AVANCE-600 (600 МГц). Положение сигналов исследуемых веществ определялось по δ-шкале и

ДОКЛАДЫ АКАДЕМИИ НАУК том 488 № 5 2019

проведено относительно сигналов остаточных протонов дейтерорастворителя ДМСО-d₆ (2,49 м.д.).

ИК-спектры соединений получены на приборе Varian Excalibrum 3100 FT-I методом неполного внутреннего отражения.

Элементный анализ проведён классическим методом микроанализа [11]. Температуры плавления определены на приборе Фишера–Джонса "Fisher Scientific".

Macc-спектры высокого разрешения были зарегистрированы на приборе "Bruker" UHR-TOF MaxisTM Impact.

Рентгеноструктурный анализ. Монокристаллы соединения выращены из раствора в этаноле. Параметры элементарной ячейки кристаллов (3) и трёхмерный набор интенсивностей получены при температуре 150 К на автодифрактометре Xcalibur Eos (Мо K_{α} -излучение, графитовый монохроматор). Соединение (3) – оранжевые монокристаллы $C_{33}H_{33}Cl_2N_2O^+$ ClO₄⁻, моноклинные, пр.гр. P_{2_1}/n , параметры ячейки: a = 9,6136(7), b = 14,8574(12), c = 11,9380(9) Å, $\beta = 91,008(7)^\circ, V = 1704,88$ Å³, Z = 2;

() ()		
Связь	<i>l</i> (3), Å	<i>l</i> (5), Å
O(1')-C(9')	1,340	1,363
O(1')-C(2'2)	1,474	1,485
N(1)-C(8)	1,413	1,421
N(1)-C(2'2)	1,469	1,448
N(1)-C(10)	1,447	1.447
C(2'2)-C(3')	1,483	1,491
C(3')-C(4')	1,327	1,323
C(8')-C(12')	1,441	1,450
C(12')-C(13')	1,356	1,349
C(2")-C(3")	1,530	1,524
C(2")-C(13')	1,406	1.424
C(2")-N(1")	1,339	1,321
N(1")-C(8")	1,419	1,422
N(1")-C(10")	1,461	1,464
C(4)-C(5)	1,401	1,385
C(5)-C(6)	1,357	1,368
C(4")-C(5")	1,383	1,390
C(5")-C(6")	1,376	1,385
Cl(1) - C(5)	1,753	_
Cl(2)-C(5")	1,748	_
Угол	ω° (3)	ω° (5)
C(4) - C(5) - C(6)	122,65	120,86
C(8) - C(9) - C(3)	106,35	108,49
C(8)-N(1)-C(2'2)	105,01	106,91
C(3')-C(2'2)-N(1)	111,83	103,30
C(9')-O(1')-C(2'2)	122,39	122,40
C(9) - C(8) - N(1)	111,76	109,99
C(5')-C(6')-C(7')	118,47	117,52
C(2")-C(13')-C(12')	122,76	124,46
C(3")-C(2")-N(1")	109,16	109,61
C(2")-C(3")-C(9")	100,72	100,65
C(9")-C(8")-N(1")	108,67	107,67
C(2")-N(1")-C(8")	111,43	111,82
C(8")-C(9")-C(3")	110,02	110,14
C(4")-C(5")-C(6")	123,85	120,89
Cl(1) - C(5) - C(6)	118,65	_
Cl(2)-C(5")-C(6")	117,11	_

Таблица 1. Основные длины связей l(Å) и углы ω° для (3) и (5)

 $M = 643,50; \rho_{выч.} = 1,338 \text{ см}^3, \mu(\text{Мо}K_{\alpha}) = 0,316 \text{ мм}^{-1}.$ Интенсивности 7299 рефлексов измерены в интервале углов $2\theta \le 50,0^{\circ}$ методом ω -сканирования с монокристалла размерами $0,35 \times 0,30 \times 0,28$ мм.

Проведён эмпирический учёт поглощения по процедуре Multiscan. После исключения систематически погашенных рефлексов и усреднения интенсивностей эквивалентных рефлексов рабочий массив измеренных F^2 (hkl) и $\sigma(F^2)$ составил 5085 независимых рефлексов, из которых 2938 с $F^2 > 2\sigma(F^2)$. Структура расшифрована прямым методом и уточнена полноматричным методом наименьших квадратов

(МНК) по F^2 по программе SHELXTL в анизотропном приближении для неводородных атомов. В кристаллических структурах большинство атомов Н локализованы синтезом Фурье разностной электронной плотности, далее координаты и изотропные тепловые параметры всех атомов Н вычислялись посредством МНК по модели "наездника" [12], в последнем цикле полноматричного уточнения абсолютные сдвиги всех 415 варьируемых параметров структуры были меньше $0,001\sigma$, конечное значение R-фактора 0,0865.

1,3,3,6'-тетраметил-5-хлор-8'[(Е)-2-(1",3",3"триметил-5"-хлор-3Н-индолий-2"-ил)винил]спиро[индолин-2,2'-2Н-хромен] перхлорат (3).

К смеси 0,328 г (0,002 М) 2-гидрокси-3-формил-5-метилбензальдегида (2) и 1,232 г (0,002 М) перхлората 1,2,3,3-тетраметил-5-хлор-3Н-индолия (1) в 15 мл изопропанола добавили по каплям при нагревании 0,28 мл (один молярный эквивалент) триэтиламина. Реакционную смесь кипятили 30 мин, охладили. На следующий день выпавший осадок был отфильтрован и перекристаллизован из ацетонитрила. *T*_{пл} = 253°С. Выход 0,375 г (29,1%). ИК-спектр, v, см⁻¹: 1597 (С=С); 1300, 1251 (С–N); 1099 (С1О₄); 922 (С_{спиро}-О); 736 (С-С1). ЯМР ¹Н, б, м.д.: 8,02 (д, *J* = 16,5 Гц, 1Н, Н-12'); 7,89 $(д, J = 1.9 \Gamma ц, 1H, H-4"); 7,86 (d, J = 8,6 \Gamma ц, 1H, H-7");$ 7,84 (с, 1Н, Н-7'); 7,67(дд, J = 8,6; 2,0 Гц, 1Н, Н-6"); 7,40 (д, J = 16,5 Гц, 1H, H-13'); 7,34 (с, 1H, H-5'), 7,25 (дд, J = 5,6; 2,1 Гц, 2Н, Н-6, Н-4); 7,12 $(д, J = 10,3 \ \Gamma u, 1 H, H-4'); 6,69 (д, J=8,9 \ \Gamma u,$ 1Н, Н-7); 5,97 (д, J = 10,3 Гц, 1Н, Н-3'); 3,71 (c, 3H, N^+ -CH₃); 2,68 (c, 3H, N-CH₃); 2,30 (с, 3H, С-СН₃); 1,37 (с, 6H, гем-С-СН₃); 1,23 (с, 3Н, гем-С-СН₃); 1,17 (с, 3Н, гем-С-СН₃). ЯМР ¹³С, δ, м.д.: 181,92 (С-2"), 152,56, 147,14, 146,52, 144,90, 140,60, 138,46, 133,95, 133,33, 130,63, 130,00, 129,46, 129,04, 127,40, 123,32, 122,99, 122,14, 119,75, 119,58, 119,37, 116,61, 112,76, 108,60, 106,29 (C-2'2), 51,76 (C-3"), 51,70 (C-3), 33,92(C-10"), 28,86 (C-10), 25,40 (C-12"), 25,13 (C-11"), 24,63 (C-12), 19,83 (C-11), 19,33 (C-11"). Масс-спектр (С₃₃H₃₃Cl₂N₂O): *m/z* 543,1966 ([M-ClO₄⁻]⁺, выч. 543,1964).

Найдено, %: С 61,62; Н 5,12; Сl 16,41; N 4,33.

Вычислено, %: С 61,54; Н 5,13; Сl 16,55; N 4,38.

Источники финансирования. Работа выполнена при поддержке Министерства образования и науки Российской Федерации (государственное задание, проект № 4.6088.2017 / 8.9) и в рамках проведения эксперимента по рентгеноструктурному анализу по теме государственного задания, № государственной регистрации 0089–2019–0011 (В.В. Ткачев, Г.В. Шилов и С.М. Алдошин).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Klajn R*. Spiropyran-Based Dynamic Materials // Chem. Soc. Rev. 2014 V. 43. №1. P. 148–184.
- 2. *Szymanski W., Beierle J.M., Kistemaker H.A.V., et al.* Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches // Chem. Rev. 2013. V. 113. №8. P. 6114–6178.
- Bouas-Laurent H., Dürr H. Organic Photochromism (IUPAC Technical Report) // Pure Appl. Chem. 2001. V. 73. №4. P. 639–665.
- Olejniczak J., Carling C.-J., Almutairi A. Photocontrolled Release Using One-Photon Absorption of Visible or NIR Light // J. Control Release. 2015. V. 219. P. 18–30.
- Xie N., Feng K., Chen B., et al. A NIR Fluorescent Chemodosimeter for Imaging Endogenous Hydrogen Polysulfides Via the CSE Enzymatic Pathway // J. Mater. Chem. B. 2014. V. 2. P. 502–510.

- Bénard S., Rivière E., Yu P., et al. A Photochromic Molecule-Based Magnet // Chem. Mater. 2001. V. 13. №1. P. 159–162.
- Benniston A.C., Fortage J. Selenospiropyrans Incorporating Appended Pyrene Chromophores // Tetrahedron Lett. 2008. V. 49. P. 4292–4295.
- 8. Лукьянова М.Б., Ткачев В В., Пугачев А.Д. и др. Новый солевой спиропиран индолинового ряда с фторным заместителем // ДАН. 2018. Т. 480. №1. С. 50–54.
- Pugachev A. D., Lukyanova M.B., Lukyanov B.S., et al. New Photochromic Indoline Spiropyrans Containing Cationic Substituent in the 2H-Chromene Moiety // J. Mol. Str. 2019. V. 1178. P. 590–598.
- Ткачев В.В., Лукьянов Б.С., Лукьянова М.Б. и др. Исследование нового продукта реакции конденсации перхлората 1,2,3,3-тетраметилиндоленилия с 2,6-диформил-4-метил-фенолом // ЖСХ. 2016. Т. 57. № 6. С. 1334–1335.
- 11. Гельман Н.Э., Терентьева Е.А., Шанина Т.М., Кипаренко Л.М. Методы количественного органического элементного анализа. М.: Химия, 1987.
- 12. *Sheldrick G.M.* // SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA, 2000.

ONE-POT SYNTHESIS AND THE STRUCTURE STUDY OF A NEW INDOLINE SPIROPYRAN WITH CATIONIC SUBSTITUENT

A. D. Pugachev¹, A.S. Kozlenko¹, M. B. Lukyanova¹, B. S. Lukyanov^{1,3}, V. V. Tkachev^{2,5}, G. V. Shilov², O. P. Demidov⁴, Academician of the RAS V. I. Minkin¹, Academician of the RAS S. M. Aldoshin²

¹Institute of Physical and Organic Chemistry at Southern Federal University, Rostov-on-Don, Russian Federation ²Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Moscow region, Russian Federation ³Don State Technical University, Rostov-on-Don, Russian Federation ⁴North-Caucasus Federal University, Stavropol, Russian Federation

⁵Institute of Physiologically Active Substances of Russian Academy of Sciences, Chernogolovka, Moscow region, Russian Federation

Received July 25, 2019

One-pot synthesis and the structure study of a new salt spiropyran of indoline series containing 2H-chromenic vinyl-3H-indolium fragment as a substituent at the position 8' are described. The structure was confirmed by the method of NMR ¹H and ¹³C spectroscopy, IR and high-resolution mass spectrometry. The single crystals of the compound were investigated by X-ray analysis. The structure was compared with the previously known isostructural analogue [10].

Keywords: spiropyran, heterocycle, NMR-spectroscopy, single crystal X-ray, monocrystal, organic synthesis, one-pot synthesis.