———— ГЕОХИМИЯ —

УДК 550.42: 550.93: 552.321

НОВЫЕ ДАННЫЕ О ВОЗРАСТЕ НЕОПРОТЕРОЗОЙСКИХ ВУЛКАНИТОВ ИСАКОВСКОГО ТЕРРЕЙНА САЯНО-ЕНИСЕЙСКОГО АККРЕЦИОННОГО ПОЯСА (U-Pb, ПО ЦИРКОНУ)

П. С. Козлов¹, И. И. Лиханов^{2,*}, К. С. Иванов¹, А. Д. Ножкин², С. В. Зиновьев^{2,3}

Представлено академиком РАН В.А. Коротеевым 12.10.2016 г.

Поступило 25.10.2016 г.

Впервые установлен поздненеопротерозойский U–Pb-возраст по циркону островодужных метадацитов (691±8,8 млн лет) и базальтов (572±6,5 млн лет) киселихинской свиты кутукасской серии. Проявление базальтового вулканизма связывается с рифтогенными процессами. Исследования уточняют Легенду стратиграфии позднего докембрия Енисейского кряжа и особенности эволюции Саяно-Енисейского аккреционного пояса на неопротерозойском этапе его истории. Складчато-надвиговые структуры зоны сочленения Енисейского кряжа с Западно-Сибирской плитой могут быть благоприятны в отношении поиска нетрадиционных ловушек нефти и газа.

Ключевые слова: геохимия, метадацит, базальт, U–Pb-датирование, кутукасская серия, Енисейский кряж, Палеоазиатский океан.

DOI: https://doi.org/10.31857/S0869-56524885521-525

Исаковский террейн (ИТ) расположен на северозападе Енисейского кряжа. Интерес к этой части региона связан с историей геологического развития Палеоазиатского океана и тектоно-метаморфической эволюции в зоне перехода палеоокеан-континент. Исаковский террейн представлен тектонизированными фрагментами офиолитов и островодужных комплексов [1, 2, 3]. Около 600-620 млн лет назад [4] в результате аккреционно-коллизионных событий они были причленены к Сибирскому континенту, что привело к формированию протяжённого Саяно-Енисейского пояса и дальнейшему наращиванию континентальной коры кратона [5]. Одна из причин неоднозначной трактовки докембрийской истории в северном секторе Саяно-Енисейского пояса определяется почти полным отсутствием прецизионных изотопных датировок вулканитов.

Исследования проведены в СЗ-части Енисейского кряжа на западной окраине ИТ (рис. 1, врезка), где развиты слабометаморфизованные метаосадочно-вулканогенные отравихинская и киселихинская свиты кутукасской серии, ранее относи-

мые к мезопротерозою [6, 7]. Они пронизаны протрузиями серпентинизированных ультрабазитов сурнихинского комплекса с трактовкой возраста от мезопротерозоя [6] до позднего неопротерозоя (682 млн лет) [2]. Интрузивные образования представлены Порожнинскими плагиогранит-порфирами островодужной природы с U-Pb-возрастом по циркону 697 млн лет [1] и постколлизионными лейкогранитами Осиновского массива (550-540 млн лет, циркон, SHRIMP-II) [8]. Исаковский террейн имеет с окраиной кратона тектонические контакты предположительно надвиговой и надвиго-поддвиговой природы [1, 2, 8, 9]. Его западный контакт скрыт под осадочным чехлом Западно-Сибирской плиты. Абсолютный возраст вулканических пород отравихинской и киселихинской свит ИТ не был определён и предполагался как ранний мезопротерозой [6, 7].

Исследованы пробы метадацитов метариолитандезит-базальтовой ассоциации и миндалекаменных базальтов в правобережьи р. Енисей (рис. 1). Метадациты (обр. 15–07) слагают тонко переслаивающиеся пласты массивного и сланцеватого сложения, отличающиеся вариациями минерального состава. Представлены они микрогранобластовым агрегатом кварца (60—70%), деформированными фенокристаллами альбит-олигоклаза (до 2 мм) (10– 15%), а также мусковитом, биотитом и хлоритом (до 20%). Акцессории представлены цирконом, реже апатитом.

Базальты миндалекаменные (обр. 15–14) обнаружены в толще аповулканогенных плагиоклаз-мусковит-биотитовых сланцев и известковистых пес-

¹ Институт геологии и геохимии им. А.Н. Заварицкого Уральского отделения Российской Академии наук, Екатеринбург

² Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской Академии наук, Новосибирск

³ Новосибирский национальный исследовательский государственный университет

^{*}E-mail: likh@igm.nsc.ru

Рис. 1. Схематическая геологическая карта района исследований (по данным [8, 9] с дополнениями авторов). На врезке: **1** – Присаянский, **2** – Ангаро-Канский выступы фундамента юго-западной окраины Сибирского кратона; **3** – протерозойская окраинно-континентальная область Енисейского кряжа; заштриховано – офиолиты и островодужные комплексы аккреционного пояса (Исаковский террейн – **4**). 1 – вулканиты метариолит-андезит-базальтовой ассоциации, филлиты, метапесчаники и туфопесчаники, известняки (усть-кутукасская, отравихинская, киселихинская свиты нерасчленённые); 2 – лейкограниты субщелочные, граниты биотитовые Осиновского массива; 3 – серпентиниты аподунитовые, апогарцбургитовые; 4 – разрывные нарушения: наклонные (а), субвертикальные (б); 5 – точки отбора проб.

чаников в виде небольшого (1,5–2 м) тела линзовидной формы. С периферии тело базальтов рассланцовано и слабо изменено. Центральная часть тела, из которой отобрана проба 15–14, представлена неизменёнными массивными породами с миндалекаменной текстурой и редкими фенокристаллами (до 5–7 мм) пелитизированного андезина. По периферии миндалины сложены рудным минералом и хлоритом, а в центре — халцедоном и карбонатом. Основная ткань базальта сложена зеленовато-бурой

Рис. 2. Диаграммы с конкордией для цирконов (а) из кислых (обр. 15–07) и (б) основных (обр. 15–14) вулканитов киселихинской свиты.

массой не разложившегося изотропного вулканического стекла (60–70%) с примесью хлорита (10– 15%), карбоната (4%) и микролейстами вторичного альбита (15–20%).

Проанализированный метадацит (обр. 15-07) характеризуется следующим химическим составом (Bec, %): SiO₂ 72,5; TiO₂ 0,33; Al₂O₃ 13,92; Fe₂O₃ 2,31; MnO 0,02; MgO 1,18; CaO 0,51; Na₂O 3,90; K₂O 3,65; Р₂О₅ 0,09; ППП 1,48. По петрохимическому составу метадациты соответствуют пералюминиевым (ASI = 1,23) натрий-калиевым $(K_2O + Na_2O =$ = 7,55 мас.% при K₂O/Na₂O = 0,9) магнезиальным $(f = (FeO + 0.9 \cdot Fe_2O_3)/(FeO + 0.9 \cdot Fe_2O_3 + MgO) =$ =0,62) гранитоидам щёлочно-известковой серии. Совокупности распределения REE для метадацитов, нормированные к составу хондрита, характеризуются ясно выраженной европиевой аномалией (Eu/Eu*= =0,45) и повышенными величинами отношений: (La/Yb)_n=10,5 и (LREE/HREE)=10,7. По содержанию большинства химических элементов они сопоставимы с низкощелочными плагиогранит-порфирами Порожнинского массива островодужной природы [1]. Существенные различия петрогеохимического состава наблюдаются при их сравнении с субщелочными лейкократовыми Na-K-постколлизионными гранитами Осиновского массива, источником расплава которых являлась высокодифференцированная континентальная кора западной окраины Сибирского кратона [8]. Для метадацитов характерны гораздо более низкие концентрации радиоактивных (U, Th и K) и редкоземельных элементов (сумма REE = 130 ppm против

ДОКЛАДЫ АКАДЕМИИ НАУК том 488 № 5 2019

200—216 ppm в гранитах). На дискриминационной диаграмме Rb—Hf—Ta эти отличия определяются локализацией фигуративных точек метадацитов в поле островодужных гранитов, а лейкогранитов — в поле постколлизионных гранитов.

Базальты (обр. 15–14) характеризуются умеренными содержаниями суммы щелочей (Na₂O + K₂O = =3,3 мас.%), со значительным преобладанием Na₂O над K₂O, и содержаниями Fe₂O₃ (9,79 мас.%), MgO (5,41 мас.%), ТіО₂ (1,53 мас.%) и Р₂О₅ (0,31 мас.%). Их спектры REE обогащены лёгкими лантаноидами: $(La/Yb)_n = 4.9$ с суммой REE = 105 ppm по сравнению с базальтами океанического дна N- и Е-типа. Для них также характерны повышенные концентрации крупноионных литофильных (Rb, Ba, K), радиоактивных (Th, U) и высокозарядных (Nb, Ta, Zr, Hf) элементов относительно N-MORB и E-MORB. В целом же они имеют хорошо фракционированные мультиэлементные распределения, расположенные вблизи области спектров базальтов океанических островов или внутриплитных базальтов, характерных для рифтогенных структур. По ряду петро- и геохимических параметров эти породы чётко различаются с метабазитами Рыбинско-Панимбинского вулканического пояса в Заанагарье и Исаковского террейна [1, 10, 11]. Эти данные совместно с установленным большим разрывом во времени (~120 млн лет) с образованием островодужных вулканитов и базальтов, а также свежим практически не затронутых метаморфизмом обликом пород могут указывать на связь изученных миндалекаменных базальтов

с постаккреционной стадией растяжения коры или с рифтогенезом.

U-Рb-датирование цирконов из проб 15-07 (метадацитов) и 15-14 (базальтов) выполнено на ионном микрозонде SHRIMP-II (ЦИИ ВСЕГЕИ, Санкт-Петербург) по методике, приведённой в [12]. Цирконы характеризуются длинно- и короткопризматическим габитусом с тонким секториальным строением и нормальными Th/U-отношениями <1, что свидетельствует в пользу магматической природы циркона. Фигуративные точки девяти центральных и краевых частей зёрен цирконов из обр. 15-07 определяют значение возраста 691,8±8,8 млн лет (рис. 2а). Результаты U-Рb-датирования метадацитов в пределах погрешности метода близки датировкам цирконов из островодужных плагиогранитов Порожнинского массива (697,2±3,6 млн лет) [1] и цирконов из метаморфизованных габбро Борисихинского офиолитового массива (682 ± 13 млн лет) [2], расположенных в составе Исаковского террейна.

Фигуративные точки 8 зёрен цирконов из обр. 15-14 дают среднее значение возраста $572,9\pm6,5$ млн лет (рис. 2б), отвечающее времени магматической кристаллизации базальтов. Эти события имели несколько более древний возраст по сравнению с поздневендскими датировками постколлизионных гранитоидов Осиновского массива (540-550 млн лет), размещённого в пределах Исаковского террейна [8] и гранитоидов Верхнеканского массива (555 ± 5 млн лет) [5], расположенных в Канском блоке на юго-востоке Саяно-Енисейского аккреционного пояса. В последовательности геологических событий Енисейского кряжа изученные проявления основного магматизма следуют непосредственно за этапом вендских деформационно-метаморфических событий (~600-620 млн лет), которые маркируют завершающую стадию неопротерозойской истории региона и связаны с интенсивной тектонической переработкой пород шовной зоны после проявления аккреционно-субдукционных процессов в регионе [13].

Полученные результаты по изотопно-геохронологическим и петрохимическим особенностям вулканитов ИТ позволяют сформулировать следующие выводы. Впервые установлен поздненеопротерозойский U–Pb-возраст по циркону метадацитов островодужной природы (691±8,8 млн лет) и миндалекаменных базальтов (572±6,5 млн лет), что позволяет уточнить легенду и стратиграфическую схему [6, 7] Енисейской серии и эволюцию Саяно-Енисейского аккреционного пояса на заключительном этапе неопротерозойской истории Енисейского кряжа. Проявление базальтового вулканизма связывается с рифтогенными процессами.

Поздненеопротерозойские рубежи тектоно-метаморфической эволюции ИТ сопоставляются с заключительной фазой распада Родинии, отчленением Сибирского кратона и раскрытием Палеоазиатского океана [14]. Изученные неопротерозойские вулканогенные образования входят в состав складчато-надвиговых структур зоны сочленения Енисейского кряжа с Западно-Сибирской плитой. Предполагается, что эти структуры могут быть благоприятны в отношении поиска нетрадиционных ловушек нефти и газа [15].

Источник финансирования. Исследования выполнены по госзаданию ИГМ СО РАН при частичной финансовой поддержке гранта РФФИ № 18–05– 00152 и РНФ № 16–17–10201.

СПИСОК ЛИТЕРАТУРЫ

- 1. Верниковский В.А., Верниковская А.Е., Черных А.И. и др. // ДАН. 2001. Т. 381. № 6. С. 806-810.
- Кузьмичёв А.Б., Падерин И.П., Антонов А.В. // Геология и геофизика. 2008. Т. 49. № 12. С. 1175–1188.
- 3. Лиханов И.И., Ревердатто В.В., Козлов П.С., Зиновьев С.В. // ДАН. 2013. Т. 450. № 6. С. 685–690.
- 4. Лиханов И.И., Ревердатто В.В. Ножкин А.Д., Зиновьев С.В. // ДАН. 2013. Т. 450. № 2. С. 199–203.
- 5. Ножкин А.Д., Туркина О.М., Дмитриева Н.В., Лиханов И.И. // ДАН. 2015. Т. 461. № 5. С. 575–578.
- Легенда Енисейской серии Государственной геологической карты Российской Федерации масштаба 1:200000 (второе издание) / Ред. Л.К. Качевский // Красноярск: Красноярскгеология, 1998.
- Качевский Л.К. Геологическая карта Енисейского кряжа масштаба 1:1000000. Красноярск: ФГУГУ «Красноярскгеолсъемка», 2006.
- 8. Лиханов И.И., Ножкин А.Д., Савко К.А. // Геотектоника. 2018. Т. 52. № 1. С. 28–51.
- 9. Лиханов И.И., Ножкин А.Д., Ревердатто В.В., Козлов П.С. // Геотектоника. 2014. Т. 48. № 5. С. 32–53.
- 10. Лиханов И.И., Ревердатто В.В. // Геохимия. 2015. Т. 53. № 8. С. 675-694.
- Лиханов И.И., Ревердатто В.В. // Геохимия. 2016. Т. 54. № 2. С. 143–164.

- 12. Лиханов И.И., Ревердатто В.В. // Геохимия. 2014. Т. 52. № 1. С. 3–25.
- 14. Ярмолюк В.В., Коваленко В.И., Ковач В.П. и др.// ДАН. 2006. Т. 410. № 5. С. 657–663.
- Likhanov I.I., Reverdatto V.V., Kozlov P.S., Khiller V.V., Sukhorukov V.P. // J. Asian Earth Sciences. V. 113. P. 391–410.
- 15. Старосельцев В.С., Мигурский А.В., Старосельцев К.В. // Геология и геофизика. 2003. Т. 44. С. 76-85.

NEW DATA ON AGE OF THE NEOPROTEROZOIC VOLCANIC ROCKS OF ISAKOVKA TERRAIN FROM THE SAYAN-YENISEI ACCRETION BELT (U-Pb, ZIRCON)

P. S. Kozlov¹, I. I. Likhanov², K. S. Ivanov¹, A. D. Nozhkin², S. V. Zinoviev^{2,3}

¹Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation ²Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation ³Novosibirsk State University, Novosibirsk, Russian Federation

Presented by Academician of the RAS V.A. Koroteyev October 12, 2016

Received October 25, 2016

The Late Neoproterozoic U–Pb age for zircon of island-arc metadacites (691 ± 8.8 million years) and basalts (572 ± 6.5 million years) of the Kiselikhinskaya Formation of the Kutukasskaya Group was established for the first time. The manifestation of basaltic volcanism is associated with rift-related processes. The studies clarify the Late Precambrian stratigraphy of the Yenisei Ridge and the features of the evolution of the Sayan-Yenisei accretionary belt at the Neoproterozoic stage of its history. Folded-thrust structures of the junction zone of the Yenisei Ridge with the West Siberian Plate may be favorable in relation to the search for unconventional oil and gas traps.

Keywords: geochemistry, metadacite, basalt, U-Pb dating, Kutukasskaya Group, Yenisei Ridge, Paleo-Asian Ocean.