УДК 552.08:548.32

ОЦЕНКА МЕХАНИЗМОВ ВХОЖДЕНИЯ ПРИМЕСИ ХРОМА В CaSiO₃ И MgSiO₃ ФАЗЫ НИЖНЕЙ МАНТИИ ЗЕМЛИ ПРИ ДАВЛЕНИЯХ 18–25 ГПа

Е. И. Марченко^{1,*}, А. В. Бобров^{1,2,3}, Н. Н. Еремин¹

Представлено академиком РАН Д.Ю. Пущаровским 29.10.2018 г.

Поступило 30.10.2018 г.

Методом атомистического моделирования проанализированы различные схемы изоморфного вхождения ионов Cr^{3+} в кристаллические структуры $CaSiO_3$ и MgSiO_3 в диапазоне давлений 18–25 ГПа и температур 1873–2223 К. Для этих *PT*-условий проведена количественная оценка содержания Cr^{3+} в изучаемых структурах. Результаты полуэмпирического моделирования находятся в хорошем соответствии с литературными экспериментальными данными.

Ключевые слова: изоморфизм хрома, кристаллические структуры CaSiO₃ и MgSiO₃ **DOI**: https://doi.org/10.31857/S0869-56524885530-533

Изучение поведения примесных элементов в мантии Земли имеет важное значение для уточнения фазового и химического составов глубинных оболочек. Хром является одним из наиболее важных микроэлементов в условиях мантии Земли. Несмотря на невысокие валовые концентрации этого элемента в мантии (0,42 мас.% Cr_2O_3) [1], хром способен накапливаться в целом ряде фаз высокого давления: гранате, акимотоите, бриджманите, $CaSiO_3$ -перовските [2].

Потенциальными фазами-концентраторами хрома в нижней мантии Земли считаются бриджманит (Mg,Fe)SiO₃ и CaSiO₃ со структурами ромбического и кубического перовскитов [2]. Стоит отметить, что большинство экспериментальных исследований посвящено изучению вхождения хрома в бриджманит, тогда как данные для CaSiO₃ практически не представлены в литературе. Так, в работе [3] при 23 ГПа и 1600°С в модельной системе MgO–SiO₂–Cr₂O₃ был синтезирован бриджманит, содержащий 10,35 мас.% Cr₂O₃.

Концентрации Cr_2O_3 в мантийных бриджманитах, по данным [4, 5], находятся в интервале от 0,1 до 0,36 мас.%, а самые богатые хромом бриджманиты (до 1,33 мас.% Cr_2O_3) были описаны в виде включений в бразильских алмазах [6], что почти в три раза выше среднего содержания хрома в мантии Земли.

Согласно [3, 7, 8], Cr^{3+} преимущественно входит в структуру MgSiO₃ бриджманита, замещая Mg, Si по следующему механизму:

$$Mg^{2+} + Si^{4+} = 2Cr^{3+}$$
. (1)

В частности, составы бриджманитов, синтезированных в модельной системе $MgO-SiO_2-Cr_2O_3$ [9, 10], неплохо ложатся на единый тренд, соответствующий этой схеме (рис. 1).

В настоящей работе расчёты изоморфного вхождения ионов Cr³⁺ в CaSiO₃ со структурой кубического перовскита и ромбический бриджманит MgSiO₃ осуществлялись методом межатомных потенциалов с использованием программы GULP [11] в сверхъячейках размерами 6×6×6 (1080 атомов) для CaSiO₃ (рис. 2a) и 4×4×4 (1280 атомов) для MgSiO₃ (рис. 26) в диапазоне давлений и температур 18-25 ГПа и 1873-2223 К. Для расчётов использовалась модель потенциалов межатомного взаимодействия для пар атомов Ca-O, Mg-O, Si-O, O-O, Cr-O из работы [10] со значениями эффективных зарядов Ca^{+1,2}, Mg^{+1,2}, Si^{+2,4}, Cr^{+1,8}, O^{-1,2}. Корректность этой модели продемонстрирована авторами [12] на ряде простых и сложных оксидов, силикатов и силикатных стёкол. В качестве стартовых координат дефектов в исследуемых структурах использовались их локальные ассоциаты в сверхъячейках.

В настоящей работе опробовались следующие схемы вхождения Cr^{3+} в CaSiO₃, MgSiO₃:

 $2Ca(Mg) \rightarrow 2Cr + V_{Ca(Mg)},$ (2)

$$Ca(Mg) + Si \rightarrow Cr + Cr,$$
 (3)

$$Si + Si \rightarrow Cr + Cr + V_o,$$
 (4)

¹ Московский государственный университет им. М.В. Ломоносова

²Институт геохимии и аналитической химии

им. В.И. Вернадского Российской Академии наук, Москва ³Институт экспериментальной минералогии

им. Д.С. Коржинского Российской Академии наук, Черноголовка Московской обл.

^{*}E-mail: marchenko-ekaterina@bk.ru

<i>Р</i> , ГПа	<i>Т</i> , К	Энергия ассоциата дефекта в $CaSiO_3$, $\Im B$	Энергия ассо- циата дефекта в MgSiO ₃ , эВ					
18	1873	-10,89	-12,92					
19	1923	-9,28	-12,92					
20	1973	-9,27	-12,91					
21	2023	-9,25	-12,91					
22	2073	-9,25	-12,90					
23	2123	-9,25	-12,89					
24	2173	-9,24	-12,88					
25	2223	-9,23	-12,87					

Таблица 1. Энергии дефектообразования по схеме (3) по данным настоящих расчётов

где $V_{\rm Ca(Mg)}-$ вакансия кальция или магния, $V_{\rm o}-$ вакансия кислорода.

Полученные энергии ассоциатов дефектов, отвечающих номинальным компонентам, позволили оценить изоморфную ёмкость CaSiO₃ и MgSiO₃ по примесным ионам по методике [13]. Конструирование миналов с бо́льшими коэффициентами в правых частях уравнений (5)–(7) связано с необходимостью обеспечить концентрации хрома, сопоставимые с его вероятной изоморфной ёмкостью. Более простые миналы, как было показано серией пробных расчётов, не обеспечивали достаточной сходимости процедуры энергетической оптимизации.

Термодинамические константы представленных ниже реакций определялись соотношением активностей компонентов и рассчитывались для схем вхождения Cr (2)–(4) через свободные энергии всех фаз и компонентов реакции:

$$\begin{array}{l} 216\text{CaSiO}_{3}+\text{Cr}_{2}\text{O}_{3} \rightarrow \\ (\text{Ca}_{214}\text{Cr}_{2})\text{Si}_{216}\text{O}_{648}+2\text{CaO}+\text{V}_{\text{Ca}}, \end{array} \tag{5}$$

$$216\text{CaSiO}_3 + \text{Cr}_2\text{O}_3 \rightarrow (\text{Ca}_{215}\text{Cr})(\text{Si}_{215}\text{Cr})\text{O}_{648} + \text{CaO} + \text{SiO}_2, \qquad (6)$$

$$216CaSiO_{3}+Cr_{2}O_{3} \rightarrow Ca_{216}(Si_{214}Cr_{2})O_{648}+2SiO_{2}+V_{o}.$$
 (7)

Мольные доли дефектов оценивались в приближении идеального смешения. Аналогичные реакции были использованы также для бриджманита.

В результате расчётов обнаружено, что энергия образования ассоциата дефекта по схеме (4) составляет 29,3–30,0 эВ для CaSiO₃, 22,0–22,6 эВ для MgSiO₃ в диапазоне исследуемых давлений и температур, в то время как энергии дефектов по схемам (2), (3) отрицательны. Из таблицы 1 видно, что при увеличении давления и температуры дефектообразование по схеме (3) становится более выгодным как для CaSiO₃, так и для MgSiO₃, причём вхождение Cr³⁺ в структуру бриджманита предпочтительнее, чем в CaSiO₃ (табл. 1). При этом рассчитанная изоморфная ёмкость исследуемых фаз по Cr в бриджманите несколько выше, чем в CaSiO₃ перовските (табл. 2), и в исследуемом термодинамическом диапазоне остаётся стабильной.

Таким образом, в результате проведённых расчётов показано, что для CaSiO₃, MgSiO₃ мантийных перовскитов дефектообразование по схеме (3) более выгодно по энергии, чем по схемам (2) и (4). Вхождение ионов Cr³⁺ энергетически более выгодно в MgSiO₃, чем в CaSiO₃. В исследуемом диапазоне давлений и температур изоморфная ёмкость перовскитовой структуры MgSiO₃ по Cr-дефектам остаётся стабильной и составляет 1,03 по схеме (2), 1,02 по (3), 0,86 по наименее энергетически выгодной схеме (4), что не противоречит экспериментальным данным. Для CaSiO₃ эти значения составляют 0,72; 0,44 и 0,76 соответственно.

Полученные в результате настоящих расчётов данные позволяют на количественной основе обсуждать вопросы вхождения хрома в состав бриджманита и CaSiO₃-перовскита, а также рассматривать особенности изоморфизма в минералах перовскитовой структуры на больших глубинах.

Источник финансирования. Работа выполнена при финансовой поддержке проекта РНФ 17–17–01169

		$A^{2+} + Si^{4+} = 2Cr^{3+}$		$2A^{2+} = 2Cr^{3+} + V_A$		$2Si^{4+} = 2Cr^{3+} + V_0$	
<i>Р</i> , ГПа	Т, К	K(CaSiO ₃),	K(MgSiO ₃),	K(CaSiO ₃),	K(MgSiO ₃),	K(CaSiO ₃),	K(MgSiO ₃),
		мол.%	мол.%	мол.%	мол.%	мол.%	мол.%
18	1873	0,44	1,01	0,72	1,02	0,76	0,86
19	1923	0,44	1,02	0,73	1,03	0,76	0,87
20	1973	0,45	1,02	0,73	1,03	0,76	0,87
21	2023	0,46	1,02	0,73	1,03	0,76	0,87
22	2073	0,47	1,02	0,74	1,03	0,76	0,87
23	2123	0,48	1,02	0,74	1,03	0,76	0,87
24	2173	0,49	1,02	0,74	1,03	0,76	0,87
25	2223	0,50	1,02	0,75	1,03	0,76	0,87

Таблица 2. Рассчитанные концентрации Cr^{3+} в CaSiO₃ и MgSiO₃ с учётом различных схем дефектообразования

ДОКЛАДЫ АКАДЕМИИ НАУК том 488 № 5 2019

Рис. 1. Диаграммы, иллюстрирующие вхождение хрома в состав бриджманитов, синтезированных в сечениях $MgSiO_3 - Mg_3Cr_2Si_3O_{12}$ (залитые значки) [9] и $Mg_2SiO_4 - MgCr_2O_4$ (полые значки) [10]. Линией показан композиционный тренд, соответствующий механизму $Mg^{2+} + Si^{4+} = 2Cr^{3+}$.

Рис. 2. Сверхъячейки $6 \times 6 \times 6$ CaSiO₃ (а) и $4 \times 4 \times 4$ MgSiO₃ (б), используемые при расчётах. Проекция *cb*. Крупными тёмными шарами показаны катионы Ca, Mg, соответственно, светлым цветом – атомы Si, мелкие чёрные шары – O.

и с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ringwood A. E.* / In: Advances in Earth Science (ed. P.M. Hurley). 1966. V. 65. P. 287–356.
- 2. *Матросова Е.А., Бобров А.В., Бинди Л., Ирифуне Т. //* Петрология. 2018. Т. 26. № 6. С. 599–611.
- Bindi L., Sirotkina E.A., Bobrov A.V., Irifune T. // Amer. Miner. 2014. V. 99. P. 866–869.
- Harte B. Harris J.W., Hutchison M.T., Watt G.R., Wilding M.C. / In: Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd. 1999. V. 6. P. 125–153.

- 5. Зедгенизов Д.А., Шацкий В.С., Панин А.В., Евтушенко О.В., Рагозин А.Л., Каги Х. // Геология и геофизика. 2015. № 1/2. С. 384–396.
- Kaminsky F.V., Zakharchenko O.D., Davies R., Griffin W.L., Khachatryan-Blinova G.K., Shiryaev A.A. // Contribs Mineral. and Petrol. 2001. V. 140. P. 734–753.
- 7. *Irifune T*. Absence of an aluminous phase in the upper part of the Earth's lower mantle // Nature. 1994. V. 370. № 6485. P. 131–133.
- 8. Andrault D. // Phys. Earth Planet. Inter. 2003. V. 136. № 1–2. P. 67–78.
- 9. Sirotkina E.A., Bobrov A.V., Bindi L., Irifune T. // Contribs Mineral. and Petrol. 2015. V. 169:2. DOI: 10.1007/s00410-014-1097-0
- Sirotkina E.A., Bobrov A.V., Bindi L., Irifune T. // Amer. Miner. 2018. V. 103. P. 151–160.

ДОКЛАДЫ АКАДЕМИИ НАУК том 488 № 5 2019

- 11. *Gale J.D., Rohl A.I.* // Mol. Simul. 2003. V. 29. № 5. P. 291–341.
- 12. Pedone A., Malavasi G., Menziani M.C., Cormack A.N., Serge A. // J. Phys. Chem. B. 2006. V. 110. P. 11780–11795.
- 13. *Марченко Е.И., Еремин Н.Н., Бычков А.Ю., Греча*новский А.Е. // Вестник Мос. ун-та. Серия 4: Геология. 2017. №4. С. 3–7.

ESTIMATION OF THE ACCUMULATION OF IMPURITY CHROMIUM IONS IN CaSiO₃ AND MgSiO₃ EARTH MANTLE PHASES AT PRESSURES 18–25 GPa

E. I. Marchenko¹, N. N. Eremin¹, A. V. Bobrov^{1,2,3}

¹Lomonosov Moscow State University, Moscow, Russian Federation ²Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russian Federation

³D.S. Korzhinskii Institute of Experimental Mineralogy of Russian Academy of Sciences, Chernogolovka, Moscow region, Russian Federation

Presented by Academician of the RAS D.U. Pushcharovskii October 30, 2018

Received October 30, 2018

Based on the data of atomistic modeling, various schemes of the isomorphic occurrence of Cr^{3+} ions in the crystal structures of $CaSiO_3$ and $MgSiO_3$ in the pressure range 18–25 GPa and temperatures of 1873–2223 K were analyzed. Under these *PT*-parameters, the content of Cr^{3+} in structures under investigation was estimated. The semiempirical simulation data are in good agreement with the results of experiments.

Keywords: Cr isomorphism, CaSiO₃ and MgSiO₃ crystal structures