——— ГЕОХИМИЯ =

УДК 550.425

ФРАКЦИОНИРОВАНИЕ ИЗОТОПОВ КИСЛОРОДА В ПОЛИМОРФАХ ТіО₂ (РУТИЛ, АНАТАЗ, БРУКИТ), ОПРЕДЕЛЁННОЕ ИЗ "ПЕРВЫХ ПРИНЦИПОВ"

Д. П. Крылов*, член-корреспондент РАН А. Б. Кузнецов

Поступило 16.04.2019 г.

На основе теории функционала плотности определены зависимости от температуры β-факторов фракционирования при замещениях ¹⁸O/¹⁶O в полиморфных модификациях TiO₂: 1000 ln β_{rt}(¹⁸O/¹⁶O) = 6,93039x - 0,08158x² + 0,00116x³ + 0,08305**P*, 1000 ln β_{ant}(¹⁸O/¹⁶O) = 7,34275x - 0,09906x² + 0,00153x³ + 0,08027**P*, 1000 ln β_{brk}(¹⁸O/¹⁶O) = 7,19088x - 0,09157x² + 0,00139x³ + 0,07601**P*, $x = 10^6/T(K)^2$, *P* — давление (GPa). Полученные зависимости можно применять в изотопной геотермометрии в сочетании с β-факторами сосуществующих фаз. *Ключевые слова*: β-факторы, TiO₂, геотермометрия.

DOI: https://doi.org/10.31857/S0869-5652489162-64

Полиморфные модификации TiO₂ (rt — рутил, ant — анатаз, brk — брукит) встречаются в магматических, осадочных и метаморфических породах земного происхождения, а также среди космогенного вещества. Эти фазы используются для определения источников вещества, в катионной термометрии и геохронологии [1]. Возможности сопоставления результатов датирования и условий кристаллизации определяют перспективы применения TiO₂ в петрохронологии [2]. При известных параметрах фракционирования изотопный состав ТіО₂ может представлять достоверную геохимическую информацию о палеотемпературах, источниках вещества и составах минералообразующих флюидов. Для определения факторов фракционирования ${}^{18}\text{O}/{}^{16}\text{O}$ в TiO₂ применялись полуэмпирические методы динамики решётки и "модифицированных инкрементов", эмпирический метод определения распределения изотопов в природных ассоциациях и эксперименты гидротермального синтеза (например, [3–5]). Упрощения и предположения перечисленных методов приводят к разным результатам и, как правило, затрудняют оценки их точности и достоверности.

Цель настоящей работы — определение изотопного фракционирования ${}^{18}\text{O}/{}^{16}\text{O}$ в TiO₂ путём вычисления β-факторов из "первых принципов" без использования эмпирических предположений. В настоящее время такие определения становятся популярными в связи с развитием теории функционала

Институт геологии и геохронологии докембрия

Российской Академии наук, Санкт-Петербург

*E-mail: dkrylov@dk1899.spb.edu

плотности (DFT) и перспективами применения к неограниченному набору минералов и изотопов.

Фракционирование между фазами при изотопном равновесии:

$$\delta_{\rm A} - \delta_{\rm B} \approx 1000 \ln \beta_{\rm A} - 1000 \ln \beta_{\rm B},\tag{1}$$

где β — величины приведённых отношений статистических сумм (β-факторов), которые можно вычислить [6] из соотношения

$$\ln\beta = \frac{1}{N_{\mathbf{q}}} \sum_{\{\mathbf{q}\}} \left[\frac{1}{N} \sum_{i=1}^{3N_{\mathrm{at}}} \ln\left(\frac{v_{\mathbf{q},i}^{*}}{v_{\mathbf{q},i}} \cdot \frac{\mathrm{sh}(hv_{\mathbf{q},i}/2kT)}{\mathrm{sh}(hv_{\mathbf{q},i}^{*}/2kT)} \right) \right], (2)$$

где $v_{q,i}$ — частота фонона с волновым вектором **q** и индексом фононной ветви *i* от 1 до $3N_{\rm at}$ ($N_{\rm at}$ — количество атомов в примитивной ячейке). *T* — температура (K), *h* — постоянная Планка, *k* — постоянная Больцмана, *N* — число атомов элемента, подвергающегося изотопному замещению в ячейке, $N_{\rm q}$ — количество векторов **q**, учитываемых при суммировании. Надстрочный индекс * относится к более тяжёлому изотопу.

В данной работе частоты вычислены методом "замороженных фононов" (реализованного в программе CRYSTAL17 [7]) в гармоническом (HA, частоты каждого фонона постоянны) и квазигармоническом (QHA, частоты фононов зависят от объёма ячейки) приближениях с применением набора гауссовых полноэлектронных базисов и гибридного функционала B3LYP. Использованы наборы базисов (http://www.crystal.unito.it) с совокупностью базисных функций 86-411(d311f) для Ті и 8-411d11G для О.

63

Точность вычислений (параметр TOLINTEG) установлена на уровне 8 8 8 9 24. критерий сходимости энергии самосогласованного поля (SCF) установлен на уровне 10⁻¹² Хартри. Узлы суммирования обратной решётки определяются фактором сжатия IS = 6. Для оценки и коррекции влияния N_a на результаты [8] частоты колебаний TiO₂ вычислены по расширенным ячейкам варьирующего объёма, соответствующим $N_q = 1$ (исходная ячейка), $N_q = 8, 16$ и 27 (1, 4 и 8 для брукита). Процесс оптимизации геометрии решётки включал релаксацию координат ядер атомов и параметров решётки по квазиньютоновскому алгоритму. Отклонения вычисленных величин *a*, *c* и *V* от экспериментальных составляют для рутила [9] -0,45% (4,57 Å), -0,02% (2,95 Å) и -0,91% (61,578 Å³), для анатаза (Ibid) -0,13% (3,77 Å), -0,93% (9,41 Å) и -1,19% (134,289 Å³). -0,30% (*a*), для брукита [10] -0,13% (*b*), -0,48% (*c*) и –0,92% (V). Среднеквадратичное отклонение вычисленных частот колебаний от экспериментальных [9, 10] соответственно 12, 12 и 15 см⁻¹. Таким образом, точность воспроизведения экспериментальных параметров вполне удовлетворительная, что свидетельствует о достоверности проведённых вычислений.

Рис. 1. Изотопное фракционирование ¹⁸O/¹⁶О между кварцем (qtz) и рутилом (rt) в зависимости от температуры $\Delta_{qtz-rt} = \delta^{18}O_{qtz} - \delta^{18}O_{rt}$. Методы калибровок: 1 — DFT, настоящая работа; 2 — эмпирическая (природная), $\Delta_{qtz-rt} = 4,78/T^2$ [12]; 3 — интерполяция экспериментальных данных при 500, 600 и 700 °C с учётом зависимости $\Delta_{qtz-rt} = 4,54/T^2$ [13]; 4, 5 — "модифицированных инкрементов". $\Delta_{qtz-rt} = 4,35/T^2$ [4] и $\Delta_{qtz-rt} = 1,09 \cdot 10^6/T^2 + 5,43 \cdot 10^3/T - 2,29$ [5], *T*(K). Врезка — увеличенное для наглядности изображение в области 500–650 °C.

ДОКЛАДЫ АКАДЕМИИ НАУК том 489 № 1 2019

β-факторы вычислены согласно уравнению (2) при температурах от 0 до 2000 °С. При увеличении объёмов расширенных ячеек (количества волновых векторов [10]) выражения для β-факторов стремятся к предельным значениям:

$$1000 \ln \beta_{rt} ({}^{18}\text{O}/{}^{16}\text{O}) = 6,93039x - - 0,08158x^2 + 0,00116x^3 + 0,08305*P, 1000 \ln \beta_{ant} ({}^{18}\text{O}/{}^{16}\text{O}) = 7,34275x - - 0,09906x^2 + 0,00153x^3 + 0,08027*P, 1000 \ln \beta_{brk} ({}^{18}\text{O}/{}^{16}\text{O}) = 7,19088x - - 0,09157x^2 + 0,00139x^3 + 0,07601*P,$$
(3)

 $x = 10^6 / T(K)^2$, *P* — давление (GPa).

Влияние давления на β -факторы TiO₂ (последние слагаемые в (3)) вычислено в рамках квазигармонического приближения [11]. Как правило, в условиях земной коры поправка 1000ln β_{TiO_2} на давление не превышает 0,15–0,20‰.

Для построения изотопных геотермометров β-факторы TiO₂ сопоставляются с β-факторами других фаз. Обычно в качестве референтной фазы используется кварц, что позволяет сравнивать разные методы калибровок изотопных равновесий (для рутила представлены на рис. 1). Результаты настоящей работы идеально согласуются с результатами "природных" (эмпирических) калибровок [12], при этом расхождения вычисленных температур не превышают 5-10 °С. Полуэмпирические калибровки [13] дают оценки приблизительно на 25 °С ниже, тогда как отклонения от оценок методом инкрементов [4, 5] достигают 50-100 °С. Значительные отклонения результатов, полученных методом инкрементов, могут обусловливаться, например, применением необоснованных эмпирических поправок при вычислениях инкрементов [14]. Расхождения с экспериментальными калибровками могут обусловливаться проблемами достижения и контроля изотопных равновесий и/или влиянием состава раствора в условиях гидротермального синтеза. Кроме того, имеются расхождения в определениях β-факторов референтных фаз и, в частности, кварца [3].

Вычисленные β -факторы увеличиваются в ряду рутил—брукит—анатаз, что можно учитывать при практических определениях температур по изотопным отношениям в этих фазах. При *T* около 0 °C 1000 ln β_{rt} , 1000 ln β_{brk} , 1000 ln β_{ant} равны соответственно 81,03; 83,28 и 84,30, а при 500 °C 11,37; 11,78 и 12,01.

В целом можно отметить, что методы теоретических определений изотопных факторов фракшионирования устраняют неопределённости. присушие эмпирическим, полуэмпирическим и экспериментальным калибровкам изотопных геотермометров.

Благоларности. Вычислительные ресурсы предоставлены РШ "Вычислительный центр СПбГУ" (http://cc.spbu.ru).

Источники финансирования. Работа выполнена при поддержке РФФИ (грант 19-05-00175) и темы НИР № 0153-2019-0003.

СПИСОК ЛИТЕРАТУРЫ

- 1. Meinhold G. // Earth-Science Reviews. 2010. V. 102. № 1/2. P. 1–28.
- 2. Zack T., Kooijman E. // Rev. Mineral. Geochem. 2017. V. 83. P. 443-467.
- 3. Chacko T., Cole D.R., Horita J. // Rev. Mineral. Geochem. 2001. V. 43. № 1. P. 11.
- 4. Zheng Y.-F., Zhao Z.-F., Li S.-G., Gong B. // Geol. Soc. London, Spec. Publ. 2003. V. 220. P. 93-117.

- 5. Zheng Y.-F. // Chinese J. Geochemistry. 1995. V. 14. № 1. P. 1–11.
- 6. Meheut M., Lazzeri M., Balan E., Mauri F. // GCA. 2007. V. 71. № 13. P. 3170-3181.
- 7. Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L., Rérat M., Casassa S., Baima J., Salustro S., Kirtman B. // WIREs Computational Molecular Science. 2018. V. 8. № 4. P. 1360.
- 8. Krylov D.P., Evarestov R.A. // Eur. J. Mineral. 2018. V. 30. № 6. P. 1063–1070.
- 9. Muscat J., Swamy V., Harrison N.M. // Phys. Rev B. 2002. V. 65. № 22. DOI: https://doi.org/10.1103/ PhysRevB.65.224112.
- 10. Shojaee E., Abbasnejad M., Saeedian M., Mohammadizadeh M.R. // Phys. Rev B. 2011. V. 83. P. 174302.
- 11. Erba A. // J. Chem. Phys. 2014. V. 141. № 12. P. 124115.
- 12. Agrinier P. // Chem. Geol. 1991. V. 91. № 1. P. 49–64.
- 13. Matthews A., Schliestedt M. // Contrib. Mineral. Petrol. 1984. V. 88. № 1/2. P. 150-163.
- 14. Horita J., Clavton R.N. // GCA. 2007. V. 71. № 12. P. 3131-3135.

OXYGEN ISOTOPIC FRACTIONATION IN TiO₂ POLYMORPHS (RUTILE, ANATASE, BROOKITE) ESTIMATED FROM "FIRST PRINCIPLES"

D. P. Krylov, Corresponding Member of the RAS A. B. Kuznetsov

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences, Saint-Petersburg, Russian Federation

Received April 16, 2019

Temperature relations of β -factors for ¹⁸O/¹⁶O substitutions in TiO₂ polymorphs have been determined using the density functional theory (DFT):

 $\begin{array}{l} 1000 \ln \beta_{\rm rt}(^{18}{\rm O}/^{16}{\rm O}) = 6,93039x - 0,08158x^2 + 0,00116x^3 + 0,08305^*P, \\ 1000 \ln \beta_{\rm ant}(^{18}{\rm O}/^{16}{\rm O}) = 7,34275x - 0,09906x^2 + 0,00153x^3 + 0,08027^*P, \\ 1000 \ln \beta_{\rm btr}(^{18}{\rm O}/^{16}{\rm O}) = 7,19088x - 009157x^2 + 0,00139x^3 + 0,07601^*P, \\ \end{array}$

 $x = 10^6 / T(K)^2$, P – pressure (GPa).

The relations can be applied for isotope thermometry if combined with β -factors of coexisting phases.

Keywords: β -factors, TiO₂, isotope geothermometry.